ENCAPSULATING REACTING BEHAVIOUR IN GOAL-BASED PLANS FOR PROGRAMMING BDI AGENTS

Rafael H. **Bordini** School of Technology, PUCRS Porto Alegre, RS, Brazil rafael.bordini@pucrs.br

Rem **Collier** Jomi F. Hübner University College of Dublin DAS, Fed. Univ. of Santa Catarina Dublin, Ireland Florianópolis, SC, Brasil rem.collier@ucd.ie jomi.hubner@ufsc.br

LAMAS@AAMAS2020

Alessandro **Ricci** DISI, University of Bologna Cesena, Italy a.ricci@unibo.it

Reasoning Cycle

Dropping Achieved Intentions

- $i \in C_I$ $i = [p_1, \ldots, p_n]$ $ag_{bs} \models \operatorname{GCond}(p_i)$ for some $j, 1 \le j \le n$
- $\langle ag, C, M, T, Clrlnt \rangle \longrightarrow \langle ag, C', M, T, Clrlnt \rangle$
- *j* is the least number in [1..n] s.t. where: $ag_{bs} \models \operatorname{GCond}(p_i)$ $C'_{I} = C_{I} \setminus \{i\} \cup \{[p_{1}, \ldots, p_{j-1}]\}$

 $(CLRINT_1)$

 The RelPlans and AppPlans functions also need to be adapted

Abstract Syntax

ag	::=	bs gs ps
bs	::=	b_1
gs	::=	$g_1 \cdot \cdot \cdot$
ps	::=	$p_1 \cdots$
p	::=	$g f_c f_g$
r	::=	$(+b \mid -b)$
pr	::=	$p \mid r$
t	::=	g +b
h	::=	d_1
d	::=	a g

 b_n g_n p_n $h pr_1 \dots pr_n$ f h

 $(n \ge 0)$ $(n \ge 0)$ $(n \geq 1)$ $(n \geq 0)$

 d_n

 $(n \geq 0)$

Agent Initialisation

Algorithm 1 Agent Initialisation

Require: an initial agent program $ag = \langle bs, gs, ps \rangle$

- 1: $B \leftarrow bs$
- 2: $E \leftarrow \{\}$
- 3: for all $g \in gs$ do
- 4: $E \leftarrow E \cup \{\langle g, [] \rangle\}$

5:
$$P \leftarrow ps$$

- 6: $I \leftarrow \{\}$
- 7: while true do

 $S \leftarrow \text{current_percepts}$ 8:

- GENERATE_EVENTS(S) 9:
- $action \leftarrow \text{REASONING}_CYCLE()$ 10:
- EXECUTE(action) 11:

Event Generation from Percepts

Algorithm 2 Event Generation		
Red	quire: external variables l	
1:	function GENERATE_EVE	
2:	S is a set of percepts	
3:	for all $s \in S$ do	
4:	if <i>s</i> ∉ <i>B</i> then	
5:	$B \leftarrow B \cup \{s\}$	
6:	$E \leftarrow E \cup \{ \langle +s,$	
7:	for all $b \in B$ do	
8:	if $b \notin S$ then	
9:	$B \leftarrow B \setminus \{b\}$	
10:	$E \leftarrow E \cup \{ \langle -b \}$	

on from Percepts

- B, E
- NTS(S)
- s from the agent's sensors

 $, [] \rangle \}$

 $, []
angle \}$

Reasoning Cycle: Achieved Goals

Algorithm 3 Reasoning Cycle

Require: external variables *B*, *E*, *P*, *I* 1: **function** REASONING_CYCLE

- Drop all achieved goals 2:
- for all $i \in I$ do 3:

4:

5:

8:

- $i'' \leftarrow [p_j[h_j]] \in i$
- 6:
- if $B \models f_q$ then 7:

for j = LENGTH(i) down to 1 **do** \triangleright From bottom to top let $p_i = \langle t, f_c, f_q, h, pr_1, \dots, pr_n \rangle$ $I \leftarrow I \setminus \{i\} \cup \{\text{REMOVE}(i'', i)\}$

RC: Handling an Event 1

9:	⊳ Handle an event
10:	$se \leftarrow \text{select}_ev(E)$
11:	let $se = \langle t, i \rangle$
12:	if $i = \{\} \land t : (+b \mid -b)$
13:	for all $i \in I$ do
14:	$rps = GET_RELE$
15:	$aps = \text{Get}_Appi$
16:	if $aps \neq \{\}$ the
17:	r = SELECT
18:	let $r = \langle tfh$
19:	let $i = [p_1[h]]$
20:	$i^{\prime\prime} \leftarrow [p_1[h,$
21:	$I \leftarrow I \setminus \{i\}$

b) then > external belief event
> may trigger a r.r. in each intention
EVANT(t, i, {}) > search entire i
LICABLE(rps)

n

OPT(aps) $a > a_1, i' = 1$ $b_1, i' = 1$ $b_1, i' = 1$ $b_1 = 1$ b_1

RC: Handling an Event 2

22:	else if $i = \{\} \land t : g $ t
23:	$rps \leftarrow \text{Get_relev}$
24:	$aps \leftarrow \text{Get_Appli}$
25:	if <i>aps</i> ≠ {} then
26:	$p \leftarrow \text{SELECT}_C$
27:	let $p = \langle t, f_c, f$
28:	if $B \not\models f_g$ then
29:	$I \leftarrow I \cup \{[$
30:	else if $i \neq \{\} \land t : g t$
31:	$rps \leftarrow \text{Get_relev}$
32:	
33:	$aps \leftarrow \text{Get_Appli}$
34:	if <i>aps</i> ≠ {} then
35:	$p \leftarrow \text{select_c}$
36:	let $p = \langle t, f_c, f$

37: **if** $B \not\models f_g$ **then** 38: $I \leftarrow I \setminus \{i\}$

then \triangleright VANT $(t, [], {})$ ICABLE(rps)

external goal eventsearch only in P

```
- SELECT_OPT(aps)

p = \langle t, f_c, f_g, h, pr_1, \dots, pr_n \rangle

B \not\models f_g then

I \leftarrow I \setminus \{i\} \cup \{\text{PUSH}(p[h], i)\}
```

RC: Executing an Intention

39:	Execute a step of an
40:	$i \leftarrow \text{select_int}(I)$
41:	let $i = [p_1[d_1, h_1], i']$
42:	if $d_1 : g$ then
43:	$E \leftarrow E \cup \{\langle d_1, i \rangle\}$
44:	action \leftarrow REASONI
45:	return action
46:	else if $d_1 : a$ then
46: 47:	else if $d_1 : a$ then $i'' \leftarrow [p_1[h_1], i']$
46: 47: 48:	else if $d_1 : a$ then $i'' \leftarrow [p_1[h_1], i']$ $I \leftarrow I \setminus \{i\} \cup \{i''\}$
46: 47: 48: 49:	else if $d_1 : a$ then $i'' \leftarrow [p_1[h_1], i']$ $I \leftarrow I \setminus \{i\} \cup \{i''\}$ return d_1
46: 47: 48: 49: 50:	else if $d_1 : a$ then $i'' \leftarrow [p_1[h_1], i']$ $I \leftarrow I \setminus \{i\} \cup \{i''\}$ return d_1 > See note in the text a

intention

ING_CYCLE()

about empty stacks

Retrieving Relevant Plans

Algorithm 4 Retrieving Rele	
Rea	quire: external variable <i>P</i>
1:	function GET_RELEVANT
2:	if <i>i</i> ≠ {} then
3:	let $p[h] = \text{HEAD}(i)$
4:	for all $pr \in p$ do
5:	if relevant(p
6:	$rps \leftarrow rps$
	$GET_RELEVANT(t,$
7:	else
8:	for all $p \in P$ do
9:	if relevant(p
10:	$rps \leftarrow rps$
11:	return rps

evant Plans

)

r(t,i,rps)

)

pr,t) then $s \cup \{pr\}$, TAIL(*i*), *rps*)

check for relevant top-level plans
 p,t) then

 $\cup \{p\}$

ENCAPSULATING REACTING BEHAVIOUR IN GOAL-BASED PLANS FOR PROGRAMMING BDI AGENTS

Rafael H. **Bordini** School of Technology, PUCRS Porto Alegre, RS, Brazil rafael.bordini@pucrs.br

Rem **Collier** Jomi F. Hübner University College of Dublin DAS, Fed. Univ. of Santa Catarina Dublin, Ireland Florianópolis, SC, Brasil rem.collier@ucd.ie jomi.hubner@ufsc.br

LAMAS@AAMAS2020

Alessandro **Ricci** DISI, University of Bologna Cesena, Italy a.ricci@unibo.it

