
ENCAPSULATING REACTING
BEHAVIOUR IN GOAL-BASED PLANS
FOR PROGRAMMING BDI AGENTS

LAMAS@AAMAS2020

Rafael H. Bordini
School of Technology, PUCRS

Porto Alegre, RS, Brazil
rafael.bordini@pucrs.br

Rem Collier
University College of Dublin

Dublin, Ireland
rem.collier@ucd.ie

Jomi F. Hübner
DAS, Fed. Univ. of Santa Catarina

Florianópolis, SC, Brasil
jomi.hubner@ufsc.br

Alessandro Ricci
DISI, University of Bologna

Cesena, Italy
a.ricci@unibo.it

Reasoning Cycle

ClrInt SelEv RelPl ApplPl SelAppl

ProcMsg ExecInt SelInt AddIM

Dropping Achieved Intentions

AgentSpeak(ER): An Extension of AgentSpeak(L) improving Encapsulation and Reasoning about GoalsAAMAS’18, July 2018, Stockholm, Sweden

the moment where the goal-condition became true (hence an inten-
tion needing to be deactivated); it is also worth the computational
burden in as much as it has the various practical programming
advantages we pointed out earlier in this paper.

The required stage for checking goal-conditions is included in
the existing ClrInt stage (which previously only removed empty
intentions) except it is nowmoved to the beginning of the reasoning
cycle (to ensure nothing in the reasoning cycle is done under the
assumption a deactivated intention is still active), just after the
ProcMsg stage (as the information just received from other agents
might be useful in checking for goals to be deactivated). The clearing
of intentions used to be the last part of the reasoning cycle, but
because there are no other dependencies between the �rst and last
stages, ClrInt might as well be done at the beginning rather than
the end. The slightly changed reasoning cycle is shown in Figure 1.

ClrInt SelEv RelPl ApplPl SelAppl

ProcMsg ExecInt SelInt AddIM

Figure 1: The AgentSpeak(ER) Reasoning Cycle

The ClrInt stage also needs new semantic rules. In fact, the pre-
vious 3 C��I�� rules (see [6, p 212]) are no longer needed, as empty
intentions are not to be removed from the set of intentions, unless
their goal condition becomes true. To facilitate the presentation of
the new rules, we de�ne a new auxiliary function GCond, which
given a g-plan simply returns the goal-condition component of
that plan, as follows. Let p =“+!g : c <: gc {<- a.}”, then
GCond(p) = gc, more speci�cally the logical formula coded by gc.
Also, we denote by [p1, ...,pn] an intention stack with plan pn at
its top.

The new rule C��I��1 is as shown below, and rule
C��I��1 is not shown because it simply causes the transition
hag,C,M,T ,ClrInti �! hag,C,M,T , SelEvi in case the negation
of the precondition of C��I��1 holds. The rule below essentially
removes from intentions the bottom-most g-plan for which its
goal-condition now follows from the state of the belief base. The
intuition is that if goal !g1 required a subgoal !g2 (a plan for which
was pushed on top of the plan for the former one in the intention
stack) and !g1 is no longer active, that whole part of the intention
stack above it needs to be removed together with it.

i 2 CI i = [p1, . . . ,pn]
a�bs |= GCond(pj) for some j, 1  j  n

hag,C,M,T ,ClrInti �! hag,C 0,M,T ,ClrInti

where: j is the least number in [1..n] s.t.
a�bs |= GCond(pj)

C 0

I = CI \ {i} [{[p1, . . . ,pj�1]}

(C��I��1)

The auxiliary functions RelPlans(ps, te) AppPlans(ps, te) (see
De�nitions 10.2 and 10.3 in [6]) can be changed to accommodate
both the new g-plan structure as well as the �ring of e-plans (i.e.,
plans for reacting to external events) for all intentions rather than

creating a single new separate intention as before. First, the rede-
�ned functions now receive a set of intentions as an extra parameter;
in the new semantic rules they are called with the agent’s plan li-
brary and the current contents of the set of intentions (a�ps andCI
in the operational semantics, respectively). If te is an external event,
the new parameter is used to check for applicable plans for each
individual intention plus the empty intention4 >. Besides having
an extra parameter, the functions now return a set of triples rather
than a pair. We use TrEv(p) to refer to the triggering event of a
plan p, and Scope([p1, . . . ,pn]) returns all plans in the scope of the
g-plan pn . By “in scope”, we mean the plans that appear (imme-
diately) within the braces delimiting a g-plan (but not within its
subgoals); for example the plans for +e1, +e2, and +!k (but not for
+e3) are in the scope of the g-plan +!g : c <: gc { . . . } shown
in the beginning of Section 3.1. Furthermore, note that the Scope
function can determine the exact plan for pn in the forest of g-plan
trees now forming the plan library by using plans p1, . . . ,pn�1. We
can now formally de�ne RelPlans:

De�nition 4.1 (Relevant Plans). The auxiliary function to retrieve
relevant plans given a plan library PL, a particular event te of type
+l or -l (i.e., an external event, one reacting to changes in beliefs
rather than a goal adoption event), and a set of intentions I is
de�ned as RelPlans(PL, te, I) = {hps, � , ii | i 2 I , i = [p1, . . . ,pn],
and ps = {rp | rp 2 Scope([p1, . . . ,pj]) and {te} |= TrEv(rp)� , for
some m.g.u. � }, where j is the greatest number in [1..n] s.t. ps , ;,
or ps = ; if there is no such j}. For internal events, the function
returns a set containing a single element hps, � , ii where i is the
speci�c intention that generated te and ps is the set of relevant
plans using the same idea of scope as above for external events.

We do not formally de�ne the AppPlans function here due to
space, and given that it is trivially extended in a very similar way
as in De�nition 4.1 for RelPlans.

Finally, we need to change the semantics so that not just one
but all relevant e-plans are triggered, that is, one for each active
intention, and within a single intention starting from the most
speci�c plan (i.e., the one closest to the top of the intention if there
are relevant plans at other levels too). Most of the work was already
done in the rede�nitions of the RelPlans and AppPlans functions,
but we still need to change the rule for processing external events
(which now change multiple intentions). Note however that by the
time we come to handle an external event with rule E��E�, a single
plan for each intention has already been selected; that is, SO (the
option selection function) is also slightly rede�ned to work with
the new structures returned by those rede�ned auxiliary functions.

The new E��E� rule is below, and it essentially says that an ex-
ternal event now potentially interrupts various intentions, provided
there are relevant and applicable plans anywhere in the g-plans
associated with each particular current intention of the agent. The
T� component of the transition system con�guration has the re-
sult of the application of the new RelPlans and AppPlans functions.

4The empty intention being included in the set of intentions in that parameter is useful
for backwards compatibility with traditional AgentSpeak(L) but we do not discuss
this here as it would hinder the explanation of the essential aspects of the proposed
extension.

Handling External Events
AAMAS’18, July 2018, Stockholm, Sweden Paper #329

The chosen plan for each intention, after being applied its respec-
tive variable substitution � , is pushed on top of that intention (the
notation used for this below is i j [pj� j]).

T� = hte,>i T� = {hp1, �1, i1i, . . . , hpn, �n, ini}

hag,C,M,T ,AddIMi �! hag,C 0,M,T , SelInti

where: C 0

I = CI \
–n
j=1{i j } [

–n
j=1{i j [pj� j]}

(E��E�)

To conclude this section, we emphasise that, for the sake of
space, we here formalised only the main changes to the well-known
AgentSpeak semantics. The complete new transition system giving
semantics to AgentSpeak(ER) will appear in a longer paper.

5 EVALUATION
The new language has been evaluated through a prototype imple-
mentation that builds on the ASTRA [12] language. This prototype,
which is compatible with pure ASTRA code, is used to reimplement
part of an existing solution for the Minority Game [20]. Interpreter
cycle timings are then captured to develop an initial understanding
of how the new language performs.
g-plan +!g() : c <: gc {
body {
// main plan body goes here...
a; b; !g1(); !!g2();

}

/* e-plans */
rule +e1 : c1 { b1; }
rule +e2 : c2 { b2; }

}

As can be seen in the snippet of code above, the implementation
of the AgentSpeak(ER) prototype is syntactically di�erent to the
examples provided in Section 3. This re�ects the syntactic approach
adopted in ASTRA. It does not impact the associated semantics.

5.1 Minority Game
The Minority Game is a well-known model for evaluating collec-
tive behaviour of agents competing for �nite resources [20]. In a
nutshell, the game involves an odd number of agents competing for
a resource over a series of rounds. For a round, each agent makes
a binary decision (yes/no). At the end of the round, the bids are
counted, and the agents that are in the minority win. The game
has been applied mainly in the areas such as modelling �nancial
markets [9] and tra�c simulation [10].

To provide an initial evaluation of AgentSpeak(ER), we adapt an
existing ASTRA-based implementation of the Minority Game (MG).
As is shown in Figure 2, the implementation consists of 3 types
of agent: the compere agent, who is responsible for managing the
game (starting rounds, evaluating bids, ...); the player agent, who
implements a set of MG strategies; and the main agent, which is
responsible for con�guring the game (creating and con�guring the
compere and player agents). Interaction between the Compere and
the Players is through a shared game-board artifact.

The existing implementation currently consists of 10 plans.
Two of the plans are generic and are used for con�guration.
Another plan implements the bidding behaviour, delegating to
a !select_bid(...) sub-goal that can be contextually selected

Figure 2: Minority Game Agent Architecture

based on the current strategy. Of the remaining plans: four relate
to the best play strategy; one relates to a random strategy; and two
relate to a sticky strategy.

In the AgentSpeak(ER) implementation, we reduce this to 3 g-
plans — one for each of the strategies — and one traditional plan to
handle initialization. The code below consists of the initialisation
plan and a single g-plan representating the revised implementation
of the best play strategy.

In the code below, variable A represents the game board, which
is implemented as an ASTRA module [12]. Modules allow the de-
veloper to create custom actions, sensors, (logical) terms, (logical)
formulae, and events. For example, A.join() is a custom action to
allow the agent to join the game board; A.match(history, hist)
is a custom term that returns the length of the longest common
su�x of the history and hist lists; and $A.event(...) is a cus-
tom event that is generated when the Compere agent starts a new
round.

The initialisation plan selects the game strategy to be employed
by the player. This information is passed via the main(...) goal;
the ASTRA equivalent of a main method. When the interpreter
handles the event corresponding to this goal, it spawns a new
intention to achieve the win(...) goal (spawning is like forking
in multi-processing and is denoted the double exclamation mark).

When the chosen strategy is bestplay, the agent achieves the
goal by selecting the !win(�bestplay�, ...) g-plan. Upon adop-
tion, the body of this plan is executed, which in this case cre-
ates a random set of strategies that are to be used by the agent
to select its bid. This involves adopting the !setup_tactic()
subgoal which is handled by the �rst two rules within the g-
plan. The start of a round is modelled through the custom event
$A.event(�play�, []). The rule that is selected to handle this
event chooses the best strategy from the set of strategies available
to the agent. Finally, the end of a round is modelled through the
custom event $A.event(�winner�, [int bid]). The rule that is
selected to handle this event updates the score for all strategies that
lead to bid being selected.
rule +!main([string strategy, list config]) {
!!win(strategy, config); A.join();

}

• The RelPlans and AppPlans functions also need
to be adapted

Abstract Syntax

AAMAS’20, May 2020, Auckland, New Zealand Paper #1075

in agent’s plan library, representing its procedural knowledge or
know-how.

The issues that we focus on this paper are about how this con-
ceptual model is then rei�ed in concrete computational and pro-
gramming models. Each plan is typically de�ned by some key com-
ponents, including [11]:

• a trigger or invocation condition, which speci�es the circum-
stances under which the plan should be considered relevant,
usually speci�ed in terms of events;

• a context, or pre-condition, specifying the circumstances un-
der which the execution of the plan may commence and the
plan considered applicable;

• a body, de�ning a potentially quite complex course of actions
which may consist of both goals (or subgoals) and primitive
actions.

This model is pervasively used, from the original dMARS speci�ca-
tion up to the more recent CANPlan [29].

By exploiting the model in practice in AOP, two main relevant
issues emerged, as described below.

Plans without explicit goals. The invocation condition could be
both events concerning new goals or belief changes related to per-
cepts from the environment or data in general. The latter case
makes it possible to de�ne reactive behaviours and data-driven /
event-driven processing. For example, the plan “makeTea” may be
triggered by the event “thirsty” [11].

By adopting this choice in practice, a couple of important char-
acteristics can be noted. First, in plans triggered by invocation con-
ditions that concern environment/data events, the state of a�airs
remains implicit, in the mind of the designer. This has a drawback
at runtime: intentions that are created to execute the plan are task-
less/goal-less, i.e., they do not have an explicit “state of a�airs” they
are associated with. From a design/engineering point of view, the
reactive behaviour of an agent is always motivated by some task
to be achieved, a “state of a�airs” to be achieved. In the example,
the goal is to make a tea, to have a new tea. A robot that reacts to
a low-battery charge event and goes back to the recharge station
does so due to a maintenance task that could be described as “keep
the battery level not lower than some threshold”.

Second, this choice impacts strongly on modularity and reuse.
From the example, there could be multiple reasons for making a
tea, not only being thirsty, and the plan – as a recipe for making tea
– would be the same. However, if we put the triggering condition
in the plan, that plan cannot be reused for di�erent triggering
conditions. In this case the invocation condition appears better
modelled as the motivation for adopting some speci�c goal (“to
make a cup of tea”) and we can have di�erent plans for it depending
on the context. But being thirsty in this case would not be part the
plan itself.

Reactive behaviour in plan strategy. The plan body is meant to
represent a recipe for how to achieve some state of a�airs. In many
relevant cases in practice, such a recipe may include the capability
to asynchronously react to events from the environment. In some
cases this is about critical situations – e.g., low battery for a robot
cleaning the �oor. In some other cases, it could be strongly related
to the designed strategy to ful�l the task – e.g., reacting to messages

received or monitoring some state of the ongoing work done in
the environment. In the general case, the strategy used to achieve
the state of a�airs may be required to �exibly mix proactive and
reactive behaviour, but in the context of the same intention.

The model for plans (body) in BDI — i.e., a sequence of actions
and (sub-)goals — does not make this straightforward. If we need
to react to some event e in the context of a plan to achieve some
goal G, then a di�erent plan specifying e as triggering condition
must be used. The e�ect is a poor level of encapsulation about the
plan strategy, which must be necessarily speci�ed in terms of a set
of unrelated plans. As in the previous case, the relation between
the plans is in the mind of the designer, but is neither expressed
explicitly in the source code nor is it captured by intentions at
runtime.

To deal with these issues, we propose an extension of the plan
model adopted in BDI agents which:

• enforces goal/task orientation, that is: every plan p has an
explicit account for the task t to be either achieved or main-
tained. The unique invoking condition is always a goal/task
to be achieved or maintained. This implies that every inten-
tion at runtime – as a plan in execution – is bound to an
explicit goal.

• extends the plan speci�cation to include both subplans and
reactive behaviour, besides a plan body having squences
of actions and subgoals, so as to get full encapsulation of
proactivity and reactivity in the de�nition of the strategy of
a plan.

3 PROPOSAL
In this section, our proposal is presented formally and independent
of a particular programming language. This makes our approach
more easily applicable to the various existing agent programming
languages. Later in this paper we show how this has been imple-
mented in two di�erent agent platforms.

The presentation is formal yet language independent with the
help of an abstract syntax for relevant structures such as plans,
intentions, events, and so forth. The grammar below formally de-
�nes sets of such structures which can then be formally used in
an algorithm of how a general BDI interpreter should be adapted
to follow our approach. However, because there is no concrete
syntax associated with those sets BDI structures, this makes any
BDI-inspired platform that has particular representations for those
structures able to use the approach in a straightforward manner.
The abstract syntax is shown in Figure 1.

ag ::= bs gs gps
bs ::= b1 . . . bn (n � 0)
gs ::= g1 . . . gn (n � 0)
ps ::= p1 . . . pn (n � 1)
p ::= g fc f� h pr1 . . . prn (n � 0)
r ::= (+b | -b) f h
pr ::= p | r
t ::= g | +b | -b
h ::= d1 . . . dn (n � 0)
d ::= a | g

Figure 1: Abstract Syntax

AAMAS’20, May 2020, Auckland, New Zealand Paper #1075

in agent’s plan library, representing its procedural knowledge or
know-how.

The issues that we focus on this paper are about how this con-
ceptual model is then rei�ed in concrete computational and pro-
gramming models. Each plan is typically de�ned by some key com-
ponents, including [11]:

• a trigger or invocation condition, which speci�es the circum-
stances under which the plan should be considered relevant,
usually speci�ed in terms of events;

• a context, or pre-condition, specifying the circumstances un-
der which the execution of the plan may commence and the
plan considered applicable;

• a body, de�ning a potentially quite complex course of actions
which may consist of both goals (or subgoals) and primitive
actions.

This model is pervasively used, from the original dMARS speci�ca-
tion up to the more recent CANPlan [29].

By exploiting the model in practice in AOP, two main relevant
issues emerged, as described below.

Plans without explicit goals. The invocation condition could be
both events concerning new goals or belief changes related to per-
cepts from the environment or data in general. The latter case
makes it possible to de�ne reactive behaviours and data-driven /
event-driven processing. For example, the plan “makeTea” may be
triggered by the event “thirsty” [11].

By adopting this choice in practice, a couple of important char-
acteristics can be noted. First, in plans triggered by invocation con-
ditions that concern environment/data events, the state of a�airs
remains implicit, in the mind of the designer. This has a drawback
at runtime: intentions that are created to execute the plan are task-
less/goal-less, i.e., they do not have an explicit “state of a�airs” they
are associated with. From a design/engineering point of view, the
reactive behaviour of an agent is always motivated by some task
to be achieved, a “state of a�airs” to be achieved. In the example,
the goal is to make a tea, to have a new tea. A robot that reacts to
a low-battery charge event and goes back to the recharge station
does so due to a maintenance task that could be described as “keep
the battery level not lower than some threshold”.

Second, this choice impacts strongly on modularity and reuse.
From the example, there could be multiple reasons for making a
tea, not only being thirsty, and the plan – as a recipe for making tea
– would be the same. However, if we put the triggering condition
in the plan, that plan cannot be reused for di�erent triggering
conditions. In this case the invocation condition appears better
modelled as the motivation for adopting some speci�c goal (“to
make a cup of tea”) and we can have di�erent plans for it depending
on the context. But being thirsty in this case would not be part the
plan itself.

Reactive behaviour in plan strategy. The plan body is meant to
represent a recipe for how to achieve some state of a�airs. In many
relevant cases in practice, such a recipe may include the capability
to asynchronously react to events from the environment. In some
cases this is about critical situations – e.g., low battery for a robot
cleaning the �oor. In some other cases, it could be strongly related
to the designed strategy to ful�l the task – e.g., reacting to messages

received or monitoring some state of the ongoing work done in
the environment. In the general case, the strategy used to achieve
the state of a�airs may be required to �exibly mix proactive and
reactive behaviour, but in the context of the same intention.

The model for plans (body) in BDI — i.e., a sequence of actions
and (sub-)goals — does not make this straightforward. If we need
to react to some event e in the context of a plan to achieve some
goal G, then a di�erent plan specifying e as triggering condition
must be used. The e�ect is a poor level of encapsulation about the
plan strategy, which must be necessarily speci�ed in terms of a set
of unrelated plans. As in the previous case, the relation between
the plans is in the mind of the designer, but is neither expressed
explicitly in the source code nor is it captured by intentions at
runtime.

To deal with these issues, we propose an extension of the plan
model adopted in BDI agents which:

• enforces goal/task orientation, that is: every plan p has an
explicit account for the task t to be either achieved or main-
tained. The unique invoking condition is always a goal/task
to be achieved or maintained. This implies that every inten-
tion at runtime – as a plan in execution – is bound to an
explicit goal.

• extends the plan speci�cation to include both subplans and
reactive behaviour, besides a plan body having squences
of actions and subgoals, so as to get full encapsulation of
proactivity and reactivity in the de�nition of the strategy of
a plan.

3 PROPOSAL
In this section, our proposal is presented formally and independent
of a particular programming language. This makes our approach
more easily applicable to the various existing agent programming
languages. Later in this paper we show how this has been imple-
mented in two di�erent agent platforms.

The presentation is formal yet language independent with the
help of an abstract syntax for relevant structures such as plans,
intentions, events, and so forth. The grammar below formally de-
�nes sets of such structures which can then be formally used in
an algorithm of how a general BDI interpreter should be adapted
to follow our approach. However, because there is no concrete
syntax associated with those sets BDI structures, this makes any
BDI-inspired platform that has particular representations for those
structures able to use the approach in a straightforward manner.
The abstract syntax is shown in Figure 1.

ag ::= bs gs gps
bs ::= b1 . . . bn (n � 0)
gs ::= g1 . . . gn (n � 0)
ps ::= p1 . . . pn (n � 1)
p ::= g fc f� h pr1 . . . prn (n � 0)
r ::= (+b | -b) f h
pr ::= p | r
t ::= g | +b | -b
h ::= d1 . . . dn (n � 0)
d ::= a | g

Figure 1: Abstract Syntax

Agent Initialisation

Encapsulating Reactive Behaviour in Goal-based Plans for Programming BDI Agents AAMAS’20, May 2020, Auckland, New Zealand

The grammar in Figure 1 de�nes all structures of interest to our
BDI approach, where b is a metavariable standing for an individual
belief an agent may have, � a goal, a is an action, and f a logical
formula. Note that how these and other data structures required
in our presentation here are e�ectively expressed in a concrete
programming platform is irrelevant from the abstract syntax point
of view and therefore easy to adapt to whatever notion of such
structures that a particular BDI programming language platform
has.

Overall the grammar states that an agent is de�ned as a set of
(initial) beliefs, a set of (initial) goals, and a set of plans. Each plan
pi 2 ps is a tuple that has an event, a formula often referred to as
the context or guard for the plan (a formula checked when we are
selecting a plan for an event), another formula that in [26] has been
named the goal condition (the goal is achieved when/if this formula
becomes true given the agents beliefs). Plans p and reactive rules r
are triggered (t) by a goal or changes (addition ‘+’ or deletion ‘�’)
in beliefs, respectively. The body (h) of plans and rules might be
empty but otherwise is sequence of deeds (d), a name used in [10]
to refer to either goals to achieve or actions to execute. The deeds in
a plan body start to be executed when an instance of that plan/rule
becomes an intention. Within a plan there is a �nite sequence of
other such plans or reactive rules (pr).

We now show some algorithms that completely de�ne our pro-
posal in a general way for any BDI interpreter. Algorithm 1 simply
sets up the agent’s initial state, with the help of the function for
generating events in Algorithm 2, and all the important operations
of our approach is given as an agent reasoning cycle as shown in
Algorithm 3. That algorithm makes reference to another algorithm
used to retrieve relevant plans, shown as Algorithm 4, which in
our approach is di�erent than in previous agent languages, because
the plans give a context in which to look for relevant plans and
reactive rules.

Note that the non-terminals of the grammar de�ne syntactic
categories, for example bs is a set of beliefs, and when needed we
will index its elements by natural numbers. For example, given an
agent a� = hbs,�s,psi, we may refer to bi 2 bs as the agent’s i-th
initial belief. In the algorithms introduced below, if a variable name
coincides with a syntactical category of the grammar in Figure 1,
that clearly de�nes its type. Otherwise, we use the syntactic cate-
gories to express the type of a variable (or indeed to check whether
the content of a variable) using the notation u : c to say that the
content of variable u conforms to the syntactic category c . So, for
example, if we say B : bs we mean that variable B contains a set of
beliefs.

Besides the data structures de�ned in the grammar, we need
structures for events and intentions. An intention i is a stack
of plans, each with its own stack of deeds (those that are inter-
nal to plan or coming from activated reactive rules), denoted as
[p1[d11 , . . . ,d1n1], . . . ,pn [dn1 , . . . ,dnnk]] where p1 is the plan at
the top of that intention stack and d11 is the deed at the top of
p1’s stack of deeds (and therefore the next deed to be executed).
Events typically refer to changes in beliefs or goals the agent has
adopted, so an event e is a tuple ht, ii where t is a trigger (as de�ned
in the grammar above) and i an intention, possibly [], the empty
intention. As in some agent languages, when an event is associated
with an empty intention we call it external; external events arise

from perception of the environment, agent communication (for
example, goal delegation) or initial goals, whereas internal events
are associated with an intention (for example, a plan being executed
requires the achievement of a subgoal).

The main agent algorithm is shown in Algorithm 1, which simply
initialises variable B for the agent beliefs, P for the agent plans, and
the set of events E initially contains one event for each initial goal
in the program (if any). The set of intentions I is initially empty. In
this presentation an agent enters an in�nite loop within which it:
(i) perceives the environment with a function �������_��������
which is assumed as given (i.e., a concrete agent architecture will
have the ability to do so); (ii) generate events for all changes in
beliefs caused by the received percepts (see Algorithm 2); (iii) uses
the ���������_����� function shown in Algorithm 3 to decide
on the next action to take; an (iv) executes that action (again it is
assumed that the actual agent architecture provides the means for
executing an action, which expressed in the algorithm by function
�������).

Algorithm 1 Agent Initialisation

Require: an initial agent program a� = hbs,�s,psi
1: B bs

2: E {}
3: for all � 2 �s do
4: E E [{h�, []i}
5: P ps

6: I {}
7: while true do
8: S �������_��������
9: ��������_������(S)
10: action ���������_�����()
11: �������(action)

Algorithm 2 simply checks whether there are received percepts
(i.e, symbolic information saying what is currently perceived as
true in the environment) which are not currently in the belief base
and generate external events for the addition of those beliefs (line 6).
It then checks if there are beliefs which are no longer perceived as
true in the environment and generates belief deletions events for
those (line 10). The belief base itself is updating accordingly.

Algorithm 2 Event Generation from Percepts
Require: external variables B, E
1: function ��������_������(S)
2: . S is a set of percepts from the agent’s sensors
3: for all s 2 S do
4: if s < B then
5: B B [{s}
6: E E [{h+s, []i}
7: for all b 2 B do
8: if b < S then
9: B B \ {b}
10: E E [{h�b, []i}

The main algorithm is in fact Algorithm 3, which shows the
reasoning cycle for a BDI agent following our approach. Recall

Event Generation from Percepts

Encapsulating Reactive Behaviour in Goal-based Plans for Programming BDI Agents AAMAS’20, May 2020, Auckland, New Zealand

The grammar in Figure 1 de�nes all structures of interest to our
BDI approach, where b is a metavariable standing for an individual
belief an agent may have, � a goal, a is an action, and f a logical
formula. Note that how these and other data structures required
in our presentation here are e�ectively expressed in a concrete
programming platform is irrelevant from the abstract syntax point
of view and therefore easy to adapt to whatever notion of such
structures that a particular BDI programming language platform
has.

Overall the grammar states that an agent is de�ned as a set of
(initial) beliefs, a set of (initial) goals, and a set of plans. Each plan
pi 2 ps is a tuple that has an event, a formula often referred to as
the context or guard for the plan (a formula checked when we are
selecting a plan for an event), another formula that in [26] has been
named the goal condition (the goal is achieved when/if this formula
becomes true given the agents beliefs). Plans p and reactive rules r
are triggered (t) by a goal or changes (addition ‘+’ or deletion ‘�’)
in beliefs, respectively. The body (h) of plans and rules might be
empty but otherwise is sequence of deeds (d), a name used in [10]
to refer to either goals to achieve or actions to execute. The deeds in
a plan body start to be executed when an instance of that plan/rule
becomes an intention. Within a plan there is a �nite sequence of
other such plans or reactive rules (pr).

We now show some algorithms that completely de�ne our pro-
posal in a general way for any BDI interpreter. Algorithm 1 simply
sets up the agent’s initial state, with the help of the function for
generating events in Algorithm 2, and all the important operations
of our approach is given as an agent reasoning cycle as shown in
Algorithm 3. That algorithm makes reference to another algorithm
used to retrieve relevant plans, shown as Algorithm 4, which in
our approach is di�erent than in previous agent languages, because
the plans give a context in which to look for relevant plans and
reactive rules.

Note that the non-terminals of the grammar de�ne syntactic
categories, for example bs is a set of beliefs, and when needed we
will index its elements by natural numbers. For example, given an
agent a� = hbs,�s,psi, we may refer to bi 2 bs as the agent’s i-th
initial belief. In the algorithms introduced below, if a variable name
coincides with a syntactical category of the grammar in Figure 1,
that clearly de�nes its type. Otherwise, we use the syntactic cate-
gories to express the type of a variable (or indeed to check whether
the content of a variable) using the notation u : c to say that the
content of variable u conforms to the syntactic category c . So, for
example, if we say B : bs we mean that variable B contains a set of
beliefs.

Besides the data structures de�ned in the grammar, we need
structures for events and intentions. An intention i is a stack
of plans, each with its own stack of deeds (those that are inter-
nal to plan or coming from activated reactive rules), denoted as
[p1[d11 , . . . ,d1n1], . . . ,pn [dn1 , . . . ,dnnk]] where p1 is the plan at
the top of that intention stack and d11 is the deed at the top of
p1’s stack of deeds (and therefore the next deed to be executed).
Events typically refer to changes in beliefs or goals the agent has
adopted, so an event e is a tuple ht, ii where t is a trigger (as de�ned
in the grammar above) and i an intention, possibly [], the empty
intention. As in some agent languages, when an event is associated
with an empty intention we call it external; external events arise

from perception of the environment, agent communication (for
example, goal delegation) or initial goals, whereas internal events
are associated with an intention (for example, a plan being executed
requires the achievement of a subgoal).

The main agent algorithm is shown in Algorithm 1, which simply
initialises variable B for the agent beliefs, P for the agent plans, and
the set of events E initially contains one event for each initial goal
in the program (if any). The set of intentions I is initially empty. In
this presentation an agent enters an in�nite loop within which it:
(i) perceives the environment with a function �������_��������
which is assumed as given (i.e., a concrete agent architecture will
have the ability to do so); (ii) generate events for all changes in
beliefs caused by the received percepts (see Algorithm 2); (iii) uses
the ���������_����� function shown in Algorithm 3 to decide
on the next action to take; an (iv) executes that action (again it is
assumed that the actual agent architecture provides the means for
executing an action, which expressed in the algorithm by function
�������).

Algorithm 1 Agent Initialisation

Require: an initial agent program a� = hbs,�s,psi
1: B bs

2: E {}
3: for all � 2 �s do
4: E E [{h�, []i}
5: P ps

6: I {}
7: while true do
8: S �������_��������
9: ��������_������(S)
10: action ���������_�����()
11: �������(action)

Algorithm 2 simply checks whether there are received percepts
(i.e, symbolic information saying what is currently perceived as
true in the environment) which are not currently in the belief base
and generate external events for the addition of those beliefs (line 6).
It then checks if there are beliefs which are no longer perceived as
true in the environment and generates belief deletions events for
those (line 10). The belief base itself is updating accordingly.

Algorithm 2 Event Generation from Percepts
Require: external variables B, E
1: function ��������_������(S)
2: . S is a set of percepts from the agent’s sensors
3: for all s 2 S do
4: if s < B then
5: B B [{s}
6: E E [{h+s, []i}
7: for all b 2 B do
8: if b < S then
9: B B \ {b}
10: E E [{h�b, []i}

The main algorithm is in fact Algorithm 3, which shows the
reasoning cycle for a BDI agent following our approach. Recall

Reasoning Cycle: Achieved Goals
AAMAS’20, May 2020, Auckland, New Zealand Paper #1075

that in our approach we have a “goal condition” which, when true,
implies that a corresponding intended means can be dropped. This
leads to some computational burden but it is an important feature
as it ensures the agent will not take unnecessary action. This is
done in lines 3–8, starting from the bottom of the intention because
dropping a goal near the bottom, if possible, will eliminate all the
stack of plans on top of it within the intention.

We then handle one event from the set of events E. Note that, as in
AgentSpeak, we assume there are user-de�ned functions to select an
event, an option or intended means (one among possibly various ap-
plicable plans), and an intention from the set of intentions to execute
next, respectively called in the algorithm ������_��, ������_���,
and ������_���. Function ���_���������� is not given an algo-
rithm because it simply checks if the context part of the plans or
rules are true (depending on the particular language, this might
include checking for logical consequence from the belief base, for
example). After one event is selected, there are di�erent parts of
the algorithm depending on what type of event was selected.

For a belief-change event, this is handled in lines 13–21. Di�er-
ently from other BDI platforms, our approach will replicate the
reactive event to each existing intention for which it is relevant. So
for each intention in the set of intention, we search for relevant
plans in the entire intention, which in our notation here includes
syntactical copies of the plan being executed, including therefore
the plans encapsulated in them. If there are relevant and applicable
plans for that particular intention, one of those is selected and its
body executed. Again, we emphasise this process is repeated for
each single intention.

External goal events, i.e., initial goals or goals delegated by other
agents, are handled in lines 23–29. For those, after selecting one
applicable relevant plan, we simply create a new intention for it if
the goal condition is not yet believed true; the intention is a stack
with a single element which has a copy of the plan p and a list of
deeds to be executed (the body of that plan).

Internal goal events, i.e., subgoals that appear in currently exe-
cuting plans, are handled in lines 31–38. This is very similar to the
case above except that new the intended means is pushed on top of
the existing intention.

The �nal part of the algorithm selects one intention to be further
executed in that reasoning cycle. If the �rst deed not yet executed
in the body of the topmost plan in the intention is a goal, the
appropriate event is generated and the reasoning cycle function
called recursively until a next action to execute is determined. If
the deed is an action, the intention is updated to re�ect that the
action is going to be executed (i.e., it is removed of the list of deeds
to be executed) and the action is simply returned.

Note that in Algorithm 3 we do not give the details of what hap-
pens when a stack of deeds associated with a plan in the intention
stack becomes empty. In practice that leads to the removal of that
plan from the intention stack and possibly the subgoal in the list
of deeds of the plan below it in the intention stack (or the entire
intention if the list of deeds at the bottom is then empty).

Finally, Algorithm 4 shows a recursive function which receives
as parameter a trigger t to be matched with the triggers of plans
anywhere in the intention i and also in top-level goals of the plan
library (note that in our approach, reactive rules do not appear
at the top-level of a plan library, only associated with the goals

Algorithm 3 Reasoning Cycle
Require: external variables B, E, P, I
1: function ���������_�����
2: . Drop all achieved goals
3: for all i 2 I do
4: for j = ������(i) down to 1 do . From bottom to top
5: i

00 [pj [hj]] 2 i
6: let pj = ht, fc , f�,h,pr1, . . . ,prni
7: if B |= f� then
8: I I \ {i} [{������(i 00, i)}
9: . Handle an event
10: se ������_��(E)
11: let se = ht, ii
12: if i = {} ^ t : (+b | �b) then . external belief event
13: for all i 2 I do . may trigger a r.r. in each intention
14: rps = ���_��������(t, i, {}) . search entire i
15: aps = ���_����������(rps)
16: if aps , {} then
17: r = ������_���(aps)
18: let r = ht f hi
19: let i = [p1[h1], i 0]
20: i

00 [p1[h,h1], i 0]
21: I I \ {i} [{i 00}
22: else if i = {} ^ t : � then . external goal event
23: rps ���_��������(t, [], {}) . search only in P
24: aps ���_����������(rps)
25: if aps , {} then
26: p ������_���(aps)
27: let p = ht, fc , f�,h,pr1, . . . ,prni
28: if B 6|= f� then
29: I I [{[p[h]]}
30: else if i , {} ^ t : � then . internal (goal) event
31: rps ���_��������(t, i, {}) . search in i

32: . and top level plans in P

33: aps ���_����������(rps)
34: if aps , {} then
35: p ������_���(aps)
36: let p = ht, fc , f�,h,pr1, . . . ,prni
37: if B 6|= f� then
38: I I \ {i} [{����(p[h], i)}
39: . Execute a step of an intention
40: i ������_���(I)
41: let i = [p1[d1,h1], i 0]
42: if d1 : � then
43: E E [{hd1, ii}
44: action ���������_�����()
45: return action

46: else if d1 : a then
47: i

00 [p1[h1], i 0]
48: I I \ {i} [{i 00}
49: return d1
50: . See note in the text about empty stacks

RC: Handling an Event 1

AAMAS’20, May 2020, Auckland, New Zealand Paper #1075

that in our approach we have a “goal condition” which, when true,
implies that a corresponding intended means can be dropped. This
leads to some computational burden but it is an important feature
as it ensures the agent will not take unnecessary action. This is
done in lines 3–8, starting from the bottom of the intention because
dropping a goal near the bottom, if possible, will eliminate all the
stack of plans on top of it within the intention.

We then handle one event from the set of events E. Note that, as in
AgentSpeak, we assume there are user-de�ned functions to select an
event, an option or intended means (one among possibly various ap-
plicable plans), and an intention from the set of intentions to execute
next, respectively called in the algorithm ������_��, ������_���,
and ������_���. Function ���_���������� is not given an algo-
rithm because it simply checks if the context part of the plans or
rules are true (depending on the particular language, this might
include checking for logical consequence from the belief base, for
example). After one event is selected, there are di�erent parts of
the algorithm depending on what type of event was selected.

For a belief-change event, this is handled in lines 13–21. Di�er-
ently from other BDI platforms, our approach will replicate the
reactive event to each existing intention for which it is relevant. So
for each intention in the set of intention, we search for relevant
plans in the entire intention, which in our notation here includes
syntactical copies of the plan being executed, including therefore
the plans encapsulated in them. If there are relevant and applicable
plans for that particular intention, one of those is selected and its
body executed. Again, we emphasise this process is repeated for
each single intention.

External goal events, i.e., initial goals or goals delegated by other
agents, are handled in lines 23–29. For those, after selecting one
applicable relevant plan, we simply create a new intention for it if
the goal condition is not yet believed true; the intention is a stack
with a single element which has a copy of the plan p and a list of
deeds to be executed (the body of that plan).

Internal goal events, i.e., subgoals that appear in currently exe-
cuting plans, are handled in lines 31–38. This is very similar to the
case above except that new the intended means is pushed on top of
the existing intention.

The �nal part of the algorithm selects one intention to be further
executed in that reasoning cycle. If the �rst deed not yet executed
in the body of the topmost plan in the intention is a goal, the
appropriate event is generated and the reasoning cycle function
called recursively until a next action to execute is determined. If
the deed is an action, the intention is updated to re�ect that the
action is going to be executed (i.e., it is removed of the list of deeds
to be executed) and the action is simply returned.

Note that in Algorithm 3 we do not give the details of what hap-
pens when a stack of deeds associated with a plan in the intention
stack becomes empty. In practice that leads to the removal of that
plan from the intention stack and possibly the subgoal in the list
of deeds of the plan below it in the intention stack (or the entire
intention if the list of deeds at the bottom is then empty).

Finally, Algorithm 4 shows a recursive function which receives
as parameter a trigger t to be matched with the triggers of plans
anywhere in the intention i and also in top-level goals of the plan
library (note that in our approach, reactive rules do not appear
at the top-level of a plan library, only associated with the goals

Algorithm 3 Reasoning Cycle
Require: external variables B, E, P, I
1: function ���������_�����
2: . Drop all achieved goals
3: for all i 2 I do
4: for j = ������(i) down to 1 do . From bottom to top
5: i

00 [pj [hj]] 2 i
6: let pj = ht, fc , f�,h,pr1, . . . ,prni
7: if B |= f� then
8: I I \ {i} [{������(i 00, i)}
9: . Handle an event
10: se ������_��(E)
11: let se = ht, ii
12: if i = {} ^ t : (+b | �b) then . external belief event
13: for all i 2 I do . may trigger a r.r. in each intention
14: rps = ���_��������(t, i, {}) . search entire i
15: aps = ���_����������(rps)
16: if aps , {} then
17: r = ������_���(aps)
18: let r = ht f hi
19: let i = [p1[h1], i 0]
20: i

00 [p1[h,h1], i 0]
21: I I \ {i} [{i 00}
22: else if i = {} ^ t : � then . external goal event
23: rps ���_��������(t, [], {}) . search only in P
24: aps ���_����������(rps)
25: if aps , {} then
26: p ������_���(aps)
27: let p = ht, fc , f�,h,pr1, . . . ,prni
28: if B 6|= f� then
29: I I [{[p[h]]}
30: else if i , {} ^ t : � then . internal (goal) event
31: rps ���_��������(t, i, {}) . search in i

32: . and top level plans in P

33: aps ���_����������(rps)
34: if aps , {} then
35: p ������_���(aps)
36: let p = ht, fc , f�,h,pr1, . . . ,prni
37: if B 6|= f� then
38: I I \ {i} [{����(p[h], i)}
39: . Execute a step of an intention
40: i ������_���(I)
41: let i = [p1[d1,h1], i 0]
42: if d1 : � then
43: E E [{hd1, ii}
44: action ���������_�����()
45: return action

46: else if d1 : a then
47: i

00 [p1[h1], i 0]
48: I I \ {i} [{i 00}
49: return d1
50: . See note in the text about empty stacks

RC: Handling an Event 2

AAMAS’20, May 2020, Auckland, New Zealand Paper #1075

that in our approach we have a “goal condition” which, when true,
implies that a corresponding intended means can be dropped. This
leads to some computational burden but it is an important feature
as it ensures the agent will not take unnecessary action. This is
done in lines 3–8, starting from the bottom of the intention because
dropping a goal near the bottom, if possible, will eliminate all the
stack of plans on top of it within the intention.

We then handle one event from the set of events E. Note that, as in
AgentSpeak, we assume there are user-de�ned functions to select an
event, an option or intended means (one among possibly various ap-
plicable plans), and an intention from the set of intentions to execute
next, respectively called in the algorithm ������_��, ������_���,
and ������_���. Function ���_���������� is not given an algo-
rithm because it simply checks if the context part of the plans or
rules are true (depending on the particular language, this might
include checking for logical consequence from the belief base, for
example). After one event is selected, there are di�erent parts of
the algorithm depending on what type of event was selected.

For a belief-change event, this is handled in lines 13–21. Di�er-
ently from other BDI platforms, our approach will replicate the
reactive event to each existing intention for which it is relevant. So
for each intention in the set of intention, we search for relevant
plans in the entire intention, which in our notation here includes
syntactical copies of the plan being executed, including therefore
the plans encapsulated in them. If there are relevant and applicable
plans for that particular intention, one of those is selected and its
body executed. Again, we emphasise this process is repeated for
each single intention.

External goal events, i.e., initial goals or goals delegated by other
agents, are handled in lines 23–29. For those, after selecting one
applicable relevant plan, we simply create a new intention for it if
the goal condition is not yet believed true; the intention is a stack
with a single element which has a copy of the plan p and a list of
deeds to be executed (the body of that plan).

Internal goal events, i.e., subgoals that appear in currently exe-
cuting plans, are handled in lines 31–38. This is very similar to the
case above except that new the intended means is pushed on top of
the existing intention.

The �nal part of the algorithm selects one intention to be further
executed in that reasoning cycle. If the �rst deed not yet executed
in the body of the topmost plan in the intention is a goal, the
appropriate event is generated and the reasoning cycle function
called recursively until a next action to execute is determined. If
the deed is an action, the intention is updated to re�ect that the
action is going to be executed (i.e., it is removed of the list of deeds
to be executed) and the action is simply returned.

Note that in Algorithm 3 we do not give the details of what hap-
pens when a stack of deeds associated with a plan in the intention
stack becomes empty. In practice that leads to the removal of that
plan from the intention stack and possibly the subgoal in the list
of deeds of the plan below it in the intention stack (or the entire
intention if the list of deeds at the bottom is then empty).

Finally, Algorithm 4 shows a recursive function which receives
as parameter a trigger t to be matched with the triggers of plans
anywhere in the intention i and also in top-level goals of the plan
library (note that in our approach, reactive rules do not appear
at the top-level of a plan library, only associated with the goals

Algorithm 3 Reasoning Cycle
Require: external variables B, E, P, I
1: function ���������_�����
2: . Drop all achieved goals
3: for all i 2 I do
4: for j = ������(i) down to 1 do . From bottom to top
5: i

00 [pj [hj]] 2 i
6: let pj = ht, fc , f�,h,pr1, . . . ,prni
7: if B |= f� then
8: I I \ {i} [{������(i 00, i)}
9: . Handle an event
10: se ������_��(E)
11: let se = ht, ii
12: if i = {} ^ t : (+b | �b) then . external belief event
13: for all i 2 I do . may trigger a r.r. in each intention
14: rps = ���_��������(t, i, {}) . search entire i
15: aps = ���_����������(rps)
16: if aps , {} then
17: r = ������_���(aps)
18: let r = ht f hi
19: let i = [p1[h1], i 0]
20: i

00 [p1[h,h1], i 0]
21: I I \ {i} [{i 00}
22: else if i = {} ^ t : � then . external goal event
23: rps ���_��������(t, [], {}) . search only in P
24: aps ���_����������(rps)
25: if aps , {} then
26: p ������_���(aps)
27: let p = ht, fc , f�,h,pr1, . . . ,prni
28: if B 6|= f� then
29: I I [{[p[h]]}
30: else if i , {} ^ t : � then . internal (goal) event
31: rps ���_��������(t, i, {}) . search in i

32: . and top level plans in P

33: aps ���_����������(rps)
34: if aps , {} then
35: p ������_���(aps)
36: let p = ht, fc , f�,h,pr1, . . . ,prni
37: if B 6|= f� then
38: I I \ {i} [{����(p[h], i)}
39: . Execute a step of an intention
40: i ������_���(I)
41: let i = [p1[d1,h1], i 0]
42: if d1 : � then
43: E E [{hd1, ii}
44: action ���������_�����()
45: return action

46: else if d1 : a then
47: i

00 [p1[h1], i 0]
48: I I \ {i} [{i 00}
49: return d1
50: . See note in the text about empty stacks

RC: Executing an Intention

AAMAS’20, May 2020, Auckland, New Zealand Paper #1075

that in our approach we have a “goal condition” which, when true,
implies that a corresponding intended means can be dropped. This
leads to some computational burden but it is an important feature
as it ensures the agent will not take unnecessary action. This is
done in lines 3–8, starting from the bottom of the intention because
dropping a goal near the bottom, if possible, will eliminate all the
stack of plans on top of it within the intention.

We then handle one event from the set of events E. Note that, as in
AgentSpeak, we assume there are user-de�ned functions to select an
event, an option or intended means (one among possibly various ap-
plicable plans), and an intention from the set of intentions to execute
next, respectively called in the algorithm ������_��, ������_���,
and ������_���. Function ���_���������� is not given an algo-
rithm because it simply checks if the context part of the plans or
rules are true (depending on the particular language, this might
include checking for logical consequence from the belief base, for
example). After one event is selected, there are di�erent parts of
the algorithm depending on what type of event was selected.

For a belief-change event, this is handled in lines 13–21. Di�er-
ently from other BDI platforms, our approach will replicate the
reactive event to each existing intention for which it is relevant. So
for each intention in the set of intention, we search for relevant
plans in the entire intention, which in our notation here includes
syntactical copies of the plan being executed, including therefore
the plans encapsulated in them. If there are relevant and applicable
plans for that particular intention, one of those is selected and its
body executed. Again, we emphasise this process is repeated for
each single intention.

External goal events, i.e., initial goals or goals delegated by other
agents, are handled in lines 23–29. For those, after selecting one
applicable relevant plan, we simply create a new intention for it if
the goal condition is not yet believed true; the intention is a stack
with a single element which has a copy of the plan p and a list of
deeds to be executed (the body of that plan).

Internal goal events, i.e., subgoals that appear in currently exe-
cuting plans, are handled in lines 31–38. This is very similar to the
case above except that new the intended means is pushed on top of
the existing intention.

The �nal part of the algorithm selects one intention to be further
executed in that reasoning cycle. If the �rst deed not yet executed
in the body of the topmost plan in the intention is a goal, the
appropriate event is generated and the reasoning cycle function
called recursively until a next action to execute is determined. If
the deed is an action, the intention is updated to re�ect that the
action is going to be executed (i.e., it is removed of the list of deeds
to be executed) and the action is simply returned.

Note that in Algorithm 3 we do not give the details of what hap-
pens when a stack of deeds associated with a plan in the intention
stack becomes empty. In practice that leads to the removal of that
plan from the intention stack and possibly the subgoal in the list
of deeds of the plan below it in the intention stack (or the entire
intention if the list of deeds at the bottom is then empty).

Finally, Algorithm 4 shows a recursive function which receives
as parameter a trigger t to be matched with the triggers of plans
anywhere in the intention i and also in top-level goals of the plan
library (note that in our approach, reactive rules do not appear
at the top-level of a plan library, only associated with the goals

Algorithm 3 Reasoning Cycle
Require: external variables B, E, P, I
1: function ���������_�����
2: . Drop all achieved goals
3: for all i 2 I do
4: for j = ������(i) down to 1 do . From bottom to top
5: i

00 [pj [hj]] 2 i
6: let pj = ht, fc , f�,h,pr1, . . . ,prni
7: if B |= f� then
8: I I \ {i} [{������(i 00, i)}
9: . Handle an event
10: se ������_��(E)
11: let se = ht, ii
12: if i = {} ^ t : (+b | �b) then . external belief event
13: for all i 2 I do . may trigger a r.r. in each intention
14: rps = ���_��������(t, i, {}) . search entire i
15: aps = ���_����������(rps)
16: if aps , {} then
17: r = ������_���(aps)
18: let r = ht f hi
19: let i = [p1[h1], i 0]
20: i

00 [p1[h,h1], i 0]
21: I I \ {i} [{i 00}
22: else if i = {} ^ t : � then . external goal event
23: rps ���_��������(t, [], {}) . search only in P
24: aps ���_����������(rps)
25: if aps , {} then
26: p ������_���(aps)
27: let p = ht, fc , f�,h,pr1, . . . ,prni
28: if B 6|= f� then
29: I I [{[p[h]]}
30: else if i , {} ^ t : � then . internal (goal) event
31: rps ���_��������(t, i, {}) . search in i

32: . and top level plans in P

33: aps ���_����������(rps)
34: if aps , {} then
35: p ������_���(aps)
36: let p = ht, fc , f�,h,pr1, . . . ,prni
37: if B 6|= f� then
38: I I \ {i} [{����(p[h], i)}
39: . Execute a step of an intention
40: i ������_���(I)
41: let i = [p1[d1,h1], i 0]
42: if d1 : � then
43: E E [{hd1, ii}
44: action ���������_�����()
45: return action

46: else if d1 : a then
47: i

00 [p1[h1], i 0]
48: I I \ {i} [{i 00}
49: return d1
50: . See note in the text about empty stacks

Retrieving Relevant PlansEncapsulating Reactive Behaviour in Goal-based Plans for Programming BDI Agents AAMAS’20, May 2020, Auckland, New Zealand

Algorithm 4 Retrieving Relevant Plans
Require: external variable P
1: function ���_��������(t,i,rps)
2: if i , {} then
3: let p[h] = ����(i)
4: for all pr 2 p do
5: if ��������(pr,t) then
6: rps rps [{pr }

���_��������(t, ����(i), rps)
7: else
8: for all p 2 P do . check for relevant top-level plans
9: if ��������(p,t) then
10: rps rps [{p}
11: return rps

that the agent may need to achieve). The �nal parameter is a set of
plans already determined to be relevant for t , normally empty when
the function is initially called. Function �������� simply tries to
match the triggering-event of plan p with t (the implementation of
this function is of course language dependent; it might require for
example uni�cation if the language is logic based).

4 IMPLEMENTATION AND EVALUATION
To assess the computational viability and characteristics of the
proposed language, we extended the interpreters of both ASTRA [7]
and Jason [4], called ASTRA(ER) and Jason(ER) respectively, with
the new features discussed in this paper. The implementation has
helped us not only con�rm that the ideas are feasible, but provided
re�nements for the model, as well as being a tool to measure how
the approach scales and compares against other languages.1

4.1 Jason(ER)
An example of a concrete program in Jason(ER) is shown in Listing 1.
It implements plans for an initiator agent in the context of the
Contract Net Protocols (CNP) [12]. The main part of the program
is a plan to achieve the goal of running a CNP for some given
task (lines 4–14). This plan encapsulates a body (line 5) and three
sub-plans (lines 6–13). The body has three sub-goals: announce the
call for proposals (CFP), wait for bids, and contract the winner. We
highlight here the sub-plan for the sub-goal bids. It is considered
achieved when either (i) all participants have sent an answer (a
proposal or a refusal) or (ii) a deadline has passed (four seconds in
this case). The rule on line 1 is used to evaluate condition (i) and
the .wait on line 7 is used for condition (ii).

The challenge is on the interplay of those two conditions. The
solution here uses two features proposed in this paper: goal condi-
tions and sub-plans and reactive rules. The goal condition is placed
after <: on line 6 and is false. Since this condition is never sat-
is�ed in the mental state of the agent, the internal action .done
is used to �nish the goal. The reactive rules on lines 9 and 10 are
used to react to the answers. Thus, while running line 7 of the plan
body, for every received answer, one of those two reactive rules is
selected and, if enough answers have being received, it �nishes the
goal bids. If none of these two rules are executed, the plan body
1ASTRA(ER) is available at xxxxxxxx and Jason(ER) is available at xxxxxxxx.

Listing 1 Jason(ER) implementation of CNP initiator
1 all_ans(I) :- ... // true if all participants have answered
2

3 // plan to achieve goal cnp, I identifies the CNP
4 +!cnp(I,Task) {
5 <- announce_cfp(I,Task); !bids(I); !contract(I).
6 +!bids(I) <: false {
7 <- .wait(4000); .done.
8 // reaction to the event of new proposal / refusal
9 +propose(I,_) : all_ans(I) <- .done.
10 +refuse(I) : all_ans(I) <- .done.
11 }
12 +!announce_cfp(I,Task) <- ...
13 +!contract(I) <- ...
14 }

Figure 2: Jason(ER) performance evaluation.

executes .done after four seconds, continuing with the sequence
on line 7.

Considering this program, we emphasise that:
• The plan to achieve goal bids encapsulates both proactive
and reactive behaviour. The former as a sequence of actions
(the body) and the latter as a set of (encapsulated) reactive
rules.

• The reaction to answers is de�ned in the context of the goals
bids and cnp. An agent knows therefore why (for which
goal) it is executing those reactive rules.

The implementation of Jason(ER) allowed us to evaluated how
it scales considering a MAS that concurrently runs n CNPs. It is
expected that the time required to �nish n CNPs increases linearly
on n. The MAS has one agent playing initiator and eleven playing
participant. Only the initiator uses the new features of Jason(ER) as
shown in Listing 1. The result of the experiment, shown in Figure 2,
con�rms that Jason(ER) scales linearly on the number of CNPs.2

In a second experiment, we intend to evaluate the overhead of
the new features. We thus run the same MAS replacing the initiator
agent by one implemented as usual in Jason (its program is shown
in Listing 2). We noted that Jason(ER) is indeed faster than Jason for

2The code and data required to repeat the experiment, as well as more details, are
available at xxxxxxxx.

ENCAPSULATING REACTING
BEHAVIOUR IN GOAL-BASED PLANS
FOR PROGRAMMING BDI AGENTS

LAMAS@AAMAS2020

Rafael H. Bordini
School of Technology, PUCRS

Porto Alegre, RS, Brazil
rafael.bordini@pucrs.br

Rem Collier
University College of Dublin

Dublin, Ireland
rem.collier@ucd.ie

Jomi F. Hübner
DAS, Fed. Univ. of Santa Catarina

Florianópolis, SC, Brasil
jomi.hubner@ufsc.br

Alessandro Ricci
DISI, University of Bologna

Cesena, Italy
a.ricci@unibo.it

