
ENCAPSULATING REACTING
BEHAVIOUR IN GOAL-BASED PLANS
FOR PROGRAMMING BDI AGENTS

LAMAS@AAMAS 2020

Rafael H. Bordini
School of Technology, PUCRS

Porto Alegre, RS, Brazil
rafael.bordini@pucrs.br

Rem Collier
University College of Dublin

Dublin, Ireland
rem.collier@ucd.ie

Jomi F. Hübner
DAS, Fed. Univ. of Santa Catarina

Florianópolis, SC, Brasil
jomi.hubner@ufsc.br

Alessandro Ricci
DISI, University of Bologna

Cesena, Italy
a.ricci@unibo.it

LAMAS@AAMAS 2020 - “Encapsulating Reacting Behaviour in Goal-based Plans” - Bordini, Collier, Hübner, Ricci

FIRST PART - OVERVIEW
• Context

- BDI agent programming context
• Problem

- weak encapsulation in plans
• Contribution

- extended plan model
- implementation in Jason and ASTRA

LAMAS@AAMAS 2020 - “Encapsulating Reacting Behaviour in Goal-based Plans” - Bordini, Collier, Hübner, Ricci

[BACKGROUND]
PLANS IN BDI AGENT PROGRAMMING

• Belief Desire Intention (BDI) model
• Plans and Intentions

PRS [Georgeff et al, 1980s]

LAMAS@AAMAS 2020 - “Encapsulating Reacting Behaviour in Goal-based Plans” - Bordini, Collier, Hübner, Ricci

[BACKGROUND]
PLANS IN BDI AGENT PROGRAMMING

• Belief Desire Intention (BDI) model
• Plans and Intentions

BDI Platforms, Frameworks, Languages
- dMARS, JAM, JACK, SPARK,…
- 3APL/2APL, GOAL, Jason, ASTRA,…

Abstract formal languages
- AgentSpeak(L), CAN

LAMAS@AAMAS 2020 - “Encapsulating Reacting Behaviour in Goal-based Plans” - Bordini, Collier, Hübner, Ricci

[BACKGROUND]
PLANS IN BDI AGENT PROGRAMMING

• Belief Desire Intention (BDI) model
• Plans and Intentions

plans
 how to bring about a state of affairs

intentions
 the activity used to achieve that state
 of affairs (runtime concept)

specifying the course of action
to achieve such states of affairs

LAMAS@AAMAS 2020 - “Encapsulating Reacting Behaviour in Goal-based Plans” - Bordini, Collier, Hübner, Ricci

[PROBLEM]
WEAK ENCAPSULATION

• Plan encapsulation
• Weak encapsulation
• An example in Jason
• Drawbacks

plan specification should include
(encapsulate)
- the state of affairs to achieve
- the strategy to bring about it

Figure 1: Example goal-plan tree

Contest would foster hybridisation with innovative techniques
from the HTN planning community.

The IPP involves not only planning and replanning, but
also online scheduling (e.g., see [20]). The agent has limited
resources, goals may have deadlines, and plan steps may
interfere with each other: hence the agent must decide in
what order to execute plan steps. As with plan selection,
action scheduling is a dynamic process subject to change
according to the agent’s desires and environmental changes.

3. GOAL-PLAN TREES AND INTENTIONS

Abstract agent programming languages such as AgentS-
peak and CAN define intentions and their progression in
terms of partially-executed programs; the agent configura-
tion progresses by executing a single step of one of the pro-
grams [13]. However, which step of which intention is se-
lected is a black box. To allow reasoning about intention
progression, we instead define intentions and their progres-
sion in terms of goal-plan trees.

A BDI agent program consists of a set of pre-defined plans
that are used to achieve the agent’s goals. Each plan consists
of steps which are either basic actions or sub-goals. Each
sub-goal is in turn achieved by some other plan. This rela-
tionship is naturally represented as a tree structure termed
a goal-plan tree [3, 21, 4, 20]. The root of a GPT is a top-
level goal (goal-node), and its children are the plans that can
be used to achieve the goal (plan-nodes). Usually there are
several alternative plans to achieve a goal: hence, the child
plan-nodes are viewed as ‘OR’ nodes. By contrast, plan ex-
ecution involves performing all the steps in the plan: hence,
the children of a plan-node are viewed as ‘AND’ nodes. As
in Yao et al. [29, 26], we consider goal-plan trees in which
plans may contain primitive actions in addition to sub-goals.

Figure 1 shows a simple goal-plan tree. The top-level goal
G0 can be achieved by either of the two plans P0 or P2

(‘OR’ nodes). The plan P0 involves performing the action
A0 and achieving the sub-goal G1 (‘AND’ nodes), while plan
P2 involves executing the actions A3 and A4 and achieving
the sub-goals G2 and G3 (‘AND’ nodes) and so on.

Formally, we define a goal-plan tree by the BNF in Fig-
ure 2 [25]. A GoalType is a template for a goal. A GoalIn-

stance is created when an agent chooses to pursue a particu-
lar instance of goal-type. Similarly, a PlanType is a template
for a plan, and a PlanInstance is created when the agent ex-
ecutes a particular plan. An ActionType is a template for an
action, and an ActionInstance is created when a particular
action is chosen for execution by the agent. GoalTypeName,
PlanTypeName and ActionTypeName are labels that indi-

hGoalTypei ::= hGoalTypeNamei hPreconditioni
hIn-conditioni hPostconditioni
hPlansi

hGoalTypeNamei ::= hLabeli
hPlansi ::= hPlanTypeNamei (, hPlanTypeNamei)⇤

hPlanTypei ::= hPlanTypeNamei hPreconditioni
hIn-conditioni hPostconditioni
hPlanBodyi

hPlanTypeNamei ::= hLabeli
hPlanBodyi ::= hExecutionStepi (; hExecutionStepi)⇤

hExecutionStepi ::= hActionTypeNamei | hGoalTypeNamei
| (hExecutionStepi k hExecutionStepi)

hActionTypei ::= hActionTypeNamei hPreconditioni
hIn-conditioni hPostconditioni

hActionTypeNamei ::= hLabeli

hPreconditioni ::= ✏ | hConditioni (, hConditioni)⇤
hIn-conditioni ::= ✏ | hConditioni (, hConditioni)⇤

hPostconditioni ::= ✏ | hConditioni (, hConditioni)⇤
hConditioni ::= hStatementi | NOT hStatementi
hStatementi ::= string | hVariablei = hValuei

hLabeli ::= unique string

hVariablei ::= unique string

hValuei ::= string

hGoalInstancei ::= hInstanceNamei hGoalTypei
hPlanInstancei ::= hInstanceNamei hPlanTypei

hActionInstancei ::= hInstanceNamei hActionTypei
hInstanceNamei ::= hLabeli

Figure 2: BNF Syntax of GPTs with actions [25]

cate the type of the goal, the plan or the action respectively.
Plans represents the set of plan-types that may be used to
satisfy a goal of the corresponding GoalType. We assume
that it is possible to generate a GPT corresponding to each
top-level goal that can be achieved by an agent program.1

3.1 Intention Progression

Following Yao et al. [28], we define intentions and the IPP
in terms of goal-plan trees, as follows.
The intentions of an agent are represented by a set T of

goal-plan trees, where the root goal gi of each GPT ti 2 T
corresponds to a top-level goal of the agent. The progres-
sion of an intention to achieve a top-level goal gi amounts
to traversing a path through the goal-plan tree ti. The path
specifies a sequence of plans, actions, sub-goals and sub-
plans that, if executed successfully, will achieve gi. The
execution of an agent program thus corresponds to an inter-
leaving of paths through each of the GPTs in T .
More precisely, let T = {t1, . . . , tn} be the set of goal-

plan trees corresponding to the agent’s intentions, and S =
{s1, . . . , sn} be a set of pointers to the current step of each
intention. The current step si of a goal-plan tree ti is either a
primitive action or a sub-goal, and is initially set to the root
goal of ti, gi. We define next(si) as the step of ti following
the current step si. If si is a primitive action, then next(si)
is the primitive action or sub-goal following si in the same
plan, or, if si is the last action in a plan, next(si) is the next
primitive action or sub-goal in the parent plan of the current

1Note that the set of goal-plan trees corresponding to an
agent program can be computed o✏ine, from the code of the
program itself. Some approaches incorporate online plan-
ning [5, 13] to allow dynamic extension or customization of
the plan library.

in the Goal-Plan Tree model (GPT)
- plan p and a parent goal g
- plan p and children nodes (strategy)

LAMAS@AAMAS 2020 - “Encapsulating Reacting Behaviour in Goal-based Plans” - Bordini, Collier, Hübner, Ricci

[PROBLEM]
WEAK ENCAPSULATION

• Plan encapsulation
• Weak encapsulation
• An example in Jason
• Drawbacks

Current BDI models and implementations:
‣ allow for specifying plans with no
explicit state of affairs

‣ impossibility to encapsulate
reactive behaviour in the strategy of
the plan

➡ drawbacks
- in the practice of agent programming
- agent reasoning at runtime

in GPT => plan p with no parent goal g

in GPT => reactive behaviour ?

LAMAS@AAMAS 2020 - “Encapsulating Reacting Behaviour in Goal-based Plans” - Bordini, Collier, Hübner, Ricci

[PROBLEM]
WEAK ENCAPSULATION

• Plan encapsulation
• Weak encapsulation
• An example in Jason
• Drawbacks

+!cnp(I,Task)
 <- !announce_cfp(I,Task);
 !bids(I).

+!announce_cfp(I,Task) <- ...

+!bids(I)
 <- .wait(4000);
 !contract(I).

+propose(I,_) : all_ans(I) <- !contract(I).
+refuse(I) : all_ans(I) <- !contract(I).

+!contract(I) : not .intend(contract(I)) <- ...

Contract Net Protocol sketch

LAMAS@AAMAS 2020 - “Encapsulating Reacting Behaviour in Goal-based Plans” - Bordini, Collier, Hübner, Ricci

[PROBLEM]
WEAK ENCAPSULATION

• Plan encapsulation
• Weak encapsulation
• An example in Jason
• Drawbacks

reactive plans => goal-less intentions
 the goal is in developer’s mind
 but not in the agent mind

reactive behaviour not encapsulated in
the plan strategy
 implemented as unrelated plans

=> hand-managed beliefs as a
 workaround

+propose(I,_) : all_ans(I) <- !contract(I).

LAMAS@AAMAS 2020 - “Encapsulating Reacting Behaviour in Goal-based Plans” - Bordini, Collier, Hübner, Ricci

[PROPOSAL]
PLAN MODEL EXTENSION

• Revisiting the plan model
• The example revisited
• Formalisation & implementation

enforce goal/task specification
 every plan has always a state of
 affairs to be achieved

allow for encapsulating reactive
behaviour in plan strategy
 from reactive plans to reactive rules
 inside a plan

in GPT => plan p has always
 a parent goal g

in GPT => (?)

LAMAS@AAMAS 2020 - “Encapsulating Reacting Behaviour in Goal-based Plans” - Bordini, Collier, Hübner, Ricci

[PROPOSAL]
PLAN MODEL EXTENSION

• Idea
• The example revisited (Jason-ER)
• Formalisation & implementation

+!cnp(I,Task) {
 <- !announce_cfp(I,Task);
 !bids(I);
 !contract(I).

 +!bids(I) {
 <- .wait(4000); .done.

 // reaction rules
 +propose(I,_) : all_ans(I) <- .done.
 +refuse(I) : all_ans(I) <- .done.
 }

 +!announce_cfp(I,Task) <- ...
 +!contract(I) <- ...
}

LAMAS@AAMAS 2020 - “Encapsulating Reacting Behaviour in Goal-based Plans” - Bordini, Collier, Hübner, Ricci

[PROPOSAL]
PLAN MODEL EXTENSION

• Idea
• The example revisited
• Formalisation & implementation

• abstract formal language capturing
the model

• semantics: extension of the
reasoning cycle

• first implementations:
• based on Jason and ASTRA
• available on github

LAMAS@AAMAS 2020 - “Encapsulating Reacting Behaviour in Goal-based Plans” - Bordini, Collier, Hübner, Ricci

[PROPOSAL]
CONCLUDING REMARKS

• Results so far
• Ongoing & Future work

expected advantages brought by
strong encapsulation
 modularity, reusability, readability

no performance penalties

idea evaluated using a selected set of
programming examples

LAMAS@AAMAS 2020 - “Encapsulating Reacting Behaviour in Goal-based Plans” - Bordini, Collier, Hübner, Ricci

[PROPOSAL]
CONCLUDING REMARKS

• Results so far
• Ongoing & Future work

validating the approach with more
complex agent/MAS programs and
projects
 feedbacks for improving & refining
 the approach by using it in practice

GPT-based formalisation
• understanding behavioural properties
• agent reasoning at runtime 

