The Manipulability of Centrality Measures An Axiomatic Approach

<u>Tomek Was</u>, Marcin Waniek, Talal Rahwan, Tomasz Michalak

University of Warsaw, NYU Abu Dhabi

Motivation

Digression - Centrality measures

Functions assigning value to nodes reflecting their importance

Digression - Centrality measures

Functions assigning value to nodes reflecting their importance

Degree

The number of connections

Digression - Centrality measures

Functions assigning value to nodes reflecting their importance

Degree

The number of connections

Closeness

1 over the average distance

Setting

Setting: Measure of Manipulability

 $M(\mathcal{G}, v, F, \mathcal{A})$

- \mathcal{G} graph distribution
- $\boldsymbol{\upsilon}$ $\,$ evader node
- F centrality measure
- \mathcal{A} action function

Setting: Graph Distribution ${\cal G}$

B

(A) Erdős-Rényi Random Graphs (B) Watts-Strogatz Small World Network

Preferential Attachment

Network

Setting: Graph Distribution

 $\mathbb{P}_{\mathcal{G}}(G=G_0)=3.7\%$ $\mathbb{P}_{\mathcal{G}}(G = G_1) = 6.4\%$ $\mathbb{P}_{\mathcal{G}}(G = G_2) = 0.8\%$

node	Degree	Closeness
V	l (4)	l (1 / 6)
а	IV (2)	IV (1 / 8)
b	II (3)	ll (1 / 7)
С	IV (2)	VI (1 / 9)
d	IV (2)	IV (1 / 8)
е	II (3)	ll (1 / 7)

node	Degree	Closeness
V	l (4)	l (1 / 6)
а	IV (2)	IV (1 / 8)
b	II (3)	ll (1 / 7)
С	IV (2)	VI (1 / 9)
d	IV (2)	IV (1 / 8)
е	II (3)	ll (1 / 7)

node	Degree	Closeness
V	l (4)	l (1 / 6)
а	IV (2)	IV (1 / 8)
b	II (3)	ll (1 / 7)
С	IV (2)	VI (1 / 9)
d	IV (2)	IV (1 / 8)
е	II (3)	ll (1 / 7)

node	Degree	Closeness
V	l (4)	l (1 / 6)
а	IV (2)	IV (1 / 8)
b	II (3)	ll (1 / 7)
С	IV (2)	VI (1 / 9)
d	IV (2)	IV (1 / 8)
е	II (3)	ll (1 / 7)

node	Degree	Closeness
V	II (3)	ll (1 / 7)
а	II (3)	ll (1 / 7)
b	l (4)	l (1 / 6)
С	VI (1)	VI (1 / 10)
d	V (2)	V (1 / 9)
е	II (3)	ll (1 / 7)

Setting: Action function

$$\mathcal{A}(G) = \{ \text{ allowed actions in graph } G \}$$

 $\mathcal{A}_1(G) = \{ a \subseteq V : |a| = 2 \}$

e.g.: Remove Neighbors

 $\mathcal{A}_2(G) = \{a \in E[G] : v \in a\}$

e.g.: Add Between Neighbors

$\mathcal{A}_3(G) = \{ a \subseteq \mathcal{N}_G(v) : v \in a \land a \notin E[G] \}$

$\mathcal{A}_4(G) = \{a \in E[G] : v \in a\} \cup \{a \subseteq \mathcal{N}_G(v) : v \in a\}$

Setting: Measure of Manipulability

$$M(\mathcal{G}, v, F, \mathcal{A}) \in [0, 1]$$

- \mathcal{G} graph distribution 1 + Very easy to manipulate
- $\ensuremath{\mathcal{U}}$ $\ensuremath{\,\text{evader}}$ node
- F centrality measure
- ${\cal A}$ action function

 \downarrow Very hard to manipulate

AMAR Measure of Manipulability

Axiomatic Approach

Axioms for Measure of Manipulability:

- Unmanipulability
- Full Manipulability
- Weak Dominance
- Redundant Action
- Neutrality
- Linearity
- Normalisation

Axiomatic Approach

Axioms for Measure of Manipulability:

- Unmanipulability
- Full Manipulability
- Weak Dominance
- Redundant Action
- Neutrality
- Linearity
- Normalisation

If it is certain that it is impossible to hide the evader with any subset of allowed actions, then manipulability is equal to

Axiomatic Approach

Axioms for Measure of Manipulability:

- Unmanipulability
- Full Manipulability
- Weak Dominance
- Redundant Action
- Neutrality
- Linearity
- Normalisation

If it is certain that any subset of actions that hides the evader according to one centrality measure, hides it also according to the other, then the latter measure is at least as manipulable as the former

Axioms for Measure of Manipulability:

- Unmanipulability
- Full Manipulability
- Weak Dominance
- Redundant Action
- Neutrality
- Linearity
- Normalisation

Main Theorem: *A measure of manipulability satisfies all seven axioms if and only if it is the AMAR Measure of Manipulability* MAR (Minimal Actions Required) = 1 over the smallest number of actions that hides the evader or 0 if it is impossible to hide

$$MAR(G, v, F, A) \in [0, 1]$$

node	Degree
V	l (4)
а	IV (2)
b	II (3)
С	IV (2)
d	IV (2)
е	II (3)

node	Degree
V	l (4)
а	IV (2)
b	II (3)
С	IV (2)
d	IV (2)
е	II (3)

MAR(G, v, D, A) = 0

node	Degree
V	l (4)
а	IV (2)
b	II (3)
С	IV (2)
d	IV (2)
е	II (3)

Impact set

node	Degree
V	III (2)
а	V (1)
b	l (3)
С	V (1)
d	III (2)
е	l (3)

Impact set

node	Degree
V	III (2)
а	V (1)
b	l (3)
С	V (1)
d	III (2)
е	l (3)

MAR(G, v, D, A) = 1/2

node	Degree	Closeness
V	l (4)	l (1 / 6)
а	IV (2)	IV (1 / 8)
b	II (3)	II (1 / 7)
С	IV (2)	VI (1 / 9)
d	IV (2)	IV (1 / 8)
е	II (3)	II (1 / 7)

MAR(G, v, D, A) = 1/2

node	Degree	Closeness
V	l (4)	III (1 / 8)
а	IV (2)	IV (1 / 8)
b	II (3)	l (1 / 7)
С	IV (2)	V (1 / 10)
d	IV (2)	VI (1 / 11)
е	II (3)	l (1 / 7)

MAR(G, v, D, A) = 1/2

node	Degree	Closeness
V	l (4)	III (1 / 8)
а	IV (2)	IV (1 / 8)
b	II (3)	l (1 / 7)
С	IV (2)	V (1 / 10)
d	IV (2)	VI (1 / 11)
е	II (3)	l (1 / 7)

 $MAR(G, v, D, A) = 1/2 \qquad MAR(G, v, C, A) = 1$

Averaged Minimal Actions Required

$AMAR(\mathcal{G}, v, F, \mathcal{A}) = \mathbb{E}_{\mathcal{G}}(MAR(G, v, F, \mathcal{A}(G)))$

Evaluation

- 4 Centralities:
 - Degree
 - Closeness
 - Betweenness
 - Eigenvector

4 Centralities:

- Degree
- Closeness
- Betweenness
- Eigenvector

4 Graph Distributions:

- Random Graphs
- Small-World
- Preferential Attachment
- Cellular Networks

4 Centralities:

- Degree
- Closeness
- Betweenness
- Eigenvector

4 Graph Distributions:

- Random Graphs
- Small-World
- Preferential Attachment
- Cellular Networks

4 Action functions:

- All changes
- Remove neighbours
- Add between neighbors
- Local changes

Random Graphs - Erdős-Rényi model

Small-world networks - Watts-Strogatz model

Preferential attachment networks - Barabási-Albert model

Cellular networks (Tsvetovat and Carley, 2005)

AMAR = Averaged Minimal Actions Required

Summary

00

Manipulation of Centrality measures

(d)

 (\mathbf{C})

AMAR = Averaged Minimal Actions Required

Summary

00

Manipulation of Centrality measures

AMAR = Averaged Minimal Actions Required Control Contr

