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Context

• strategy logics such as ATL are useful for expressing properties of
MAS and synthesising strategies for groups of agents

• we consider strategies that require (and produce) resources

• previous work in strategy logics with resources such as RB±ATL
has focussed on checking whether a specified amount of
resources is sufficient to execute a strategy
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Strategic modalities with and without resources

• without: do the booster (agent 1) & satellite (agent 2) have a
strategy to reach an orbit from which satellite can monitor
indefinitely (m)

〈〈{1,2}〉〉>U 〈〈{2}〉〉2〈〈{2}〉〉>U m

• with: given fuel 20 and battery 15, booster (agent 1) & satellite
(agent 2) can launch, and the satellite can stay in orbit using fuel
10 and battery 5 from which it can monitor indefinitely with 5 units
of battery

〈〈{1,2}20,15〉〉>U 〈〈{2}10,5〉〉2〈〈{2}0,5〉〉>U m
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The problem

• we are solving a different problem: what are the constraints on
assignments to resource variables (fuel & battery) that make the
property true?

〈〈{1,2}x1,x2〉〉>U 〈〈{2}y1,y2〉〉2〈〈{2}z1,z2〉〉>U m

• in general, this problem cannot be solved by iteratively checking
ever increasing values for x1, x2, y1, y2, z1, z2, unless we know the
maximal bound on the values

• function form of the model checking problem: return the
constraints on resource variables for which a property holds, for
example

((x1, x2) ≥ (15,5) ∨ (x1, x2) ≥ (10,7)) ∧ (y1, y2) = (z1, z2) ≥ (0,0)
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Contribution

• in this paper, we show how to compute the constraints on
amounts of resources required to satisfy a formula

• we introduce a new strategy logic ParRB±ATL(n,r) (where n is the
number of agents and r the number of resources) with variables
for amounts of resources

• we provide a 2EXPTIME complexity result for extracting the
resources required for satisfying a ParRB±ATL(n,r) formula

• for positive formulas, we can extract Pareto optimal resource
vectors required to achieve coalition goals
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ParRB±ATL

• Parameterised Resource-Bounded Alternating Time Temporal
Logic (ParRB±ATL) allows us to reason about resource-bounded
agents executing joint actions that produce and consume
resources:
• 〈〈Ax〉〉©ψ means that a coalition A has a strategy executable within

resource bound x (where x is a tuple of variables) to ensure that the
next state satisfies ψ

• 〈〈Ax〉〉ψ1 U ψ2 means that A has a strategy executable within
resource bound x to ensure ψ2 while maintaining ψ1

• 〈〈Ax〉〉2ψ means that A has a strategy executable within resource
bound x to ensure that ψ is always true
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Strategies

• a strategy for a coalition A is a mapping from finite sequences of
states (histories) to joint actions by agents in A

• a strategy achieves 〈〈Ax〉〉©ψ if all computations generated by the
strategy satisfy ψ in the next state and do not consume more than
x resources

• a strategy achieves 〈〈Ax〉〉ψ1 U ψ2 if all computations generated by
the strategy eventually satisfy ψ2 and until then satisfy ψ1, and do
not consume more than x resources

• a strategy achieves 〈〈Ax〉〉2ψ, if all computations generated by the
strategy never consume more than x resources and satisfy ψ at
every step

Alechina, Demri, Logan Parameterised RB±ATL LAMAS 2020 7



Example: what can be expressed in ParRB±ATL

• for which values of fuel and battery can the booster (agent 1) &
satellite (agent 2) reach an orbit from which satellite can monitor
indefinitely (m)

〈〈{1,2}x1,x2〉〉>U 〈〈{2}y1,y2〉〉2〈〈{2}y1,y2〉〉>U m

agent 1 agent 2 fuel battery
α1 α2 15 5
β1 β2 10 7
γ1 γ2 10 5

charge -1
monitor 1

⟨α1, α2⟩ ⟨β1, β2⟩

⟨γ1, γ2⟩
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Models of ParRB±ATL

¬m ¬m m

⟨idle, idle, –⟩

⟨α1, α2, –⟩

⟨γ1, γ2, idle⟩

⟨–, charge, –⟩

⟨β1, β2, –⟩

¬m

⟨γ1, γ2, bad⟩

⟨–, monitor, –⟩
s0

s1 s2

⟨–, –, –⟩

s3

⟨idle, idle, –⟩

⟨idle, idle, –⟩

                                        F  B     
          cost(⟨α1, α2⟩) = (15,  5)
           cost(⟨β1, β2⟩) = (10,  7)
           cost(⟨γ1, γ2⟩) = (10,  5)
         cost(⟨charge⟩) = ( 0, -1)
         cost(⟨monitor⟩) = ( 0,  1)
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Back to the example

〈〈{1,2}x1,x2〉〉>U 〈〈{2}y1,y2〉〉2〈〈{2}y1,y2〉〉>U m

• this property holds in s0 if (x1, x2) are assigned (15,5) or (10,7),
and (y1, y2) are (0,0), and for all larger values.

agent 1 agent 2 fuel battery
α1 α2 15 5
β1 β2 10 7
γ1 γ2 10 5

charge -1
monitor 1

⟨α1, α2⟩ ⟨β1, β2⟩

⟨γ1, γ2⟩
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Model checking ParRB±ATL

Definition (function form of the model-checking problem for
ParRB±ATL(n,r))

Input: n, r ≥ 1 (in unary), a ParRB±ATL(n,r) formula ϕ, a finite
model M, and a state s

Output: a formula γ describing the set of assignments v such that
M, s, v |= ϕ, where γ is of the form:

γ := x ≥ b | > | ⊥ | ¬γ | γ ∧ γ | γ ∨ γ

for b ∈ N

Alechina, Demri, Logan Parameterised RB±ATL LAMAS 2020 11



Complexity of model checking ParRB±ATL

The main result of our paper is the following upper bound:

Theorem
the function form of the model-checking problem for ParRB±ATL can
be solved in 2EXPTIME

• 2EXPTIME lower bound is an easy consequence of the result for
non-parameterised in RB±ATL:

Alechina, N., Bulling, N., Demri, S. and Logan, B. (2018). On the
complexity of resource-bounded logics. Theoretical Computer
Science 750:69–100
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Upper bound proof idea
• builds on results from games on multi-weighted graphs

• we show that there is a bound on the amount of resource needed
to reach a particular state or to enter and execute a
non-resource-consuming loop, and this bound depends only on
the model and not on the property to be checked

• the bound is exponential in the number of resource types and the
largest action cost (maxM ) in the model

• we a result from

Jurdzinski, M., Lazić, R. and Schmitz, S. (2015).
Fixed-dimensional energy games are in pseudo-polynomial time.
In Proceedings of ICALP 2015, 260–272.

for 〈〈Ax〉〉2 modalities, and extend this to 〈〈Ax〉〉 U modalities and
the whole language
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Finite witnesses for a strategy

• a key in developing a model checking algorithm for the whole
language is that of a non-dominated witness for a strategy

• intuitively, a witness for 〈〈Ax〉〉2ψ is a finite tree describing paths to,
and representations of, non-resource consuming loops, and
where every state in the tree satisfies ψ

• for 〈〈Ax〉〉ψ1 U ψ2 formulas, a witness is a finite tree where the
leaves satisfy ψ2 and all other nodes satisfy ψ1, and the resource
allocation at the root allows A to execute all actions in the strategy
without ever going negative on any resource type

• such a witness can be extended to an infinite strategy by executing
idle in all state sequences extending paths from ψ2 states
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2EXPTIME upper bound

• a witness is non-dominated if there is no other witness where the
largest resource vector anywhere in the tree (the norm) is strictly
less, and no other norm-minimal witness with a strictly smaller
value at the root

• the set of non-dominated witnesses for each subformula φ′ of φ0
can be computed by an alternating Turing machine in EXPSPACE
(AEXSPACE)

• hence the function form of the model checking problem can be
solved in AEXSPACE

• since ASPACE(f (n)) = DTIME(2O(f (n))), AEXPSPACE=2EXPTIME
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Pareto optimal bounds

• for positive formulas, the constraint on the assignment is of the
form ∨

i

x ≥ bi

• since witnesses are non-dominated, the bi are Pareto optimal
values of resource variables

γ = ((x1, x2) ≥ (15,5) ∨ (x1, x2) ≥ (10,7)) ∧ (y1, y2) = (z1, z2) ≥ (0,0)

• so the Pareto optimal values are

((x1, x2) = (15,5) ∨ (x1, x2) = (10,7)) ∧ (y1, y2) = (z1, z2) = (0,0)
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Future work

• implement the algorithm

• study a fragment of parameterised Resource Agent Logic (RAL)
where resource values are not ‘refreshed’ for nested modalities

• the inner strategy (for a nested modality) must use the resources
remaining from the outer strategy, e.g.,

〈〈Ax〉〉>U (φ ∧ 〈〈A↓〉〉>U ψ)

means that there is a value for x , such that if A have this amount
of resources, then they could enforce a state where φ holds, and
with remaining resources, they could enforce ψ
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