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Secrets

- Of fundamental importance in, e.g.,
- safety and security
- cryptography
- authentication

- access control

+ (and In business and politics and romance and..)



What is a secret?

+"a piece of knowledge that is hidden and intended to be
kept hidden” (Wiktionary)

- “a piece of information that is only known by one person
or a few people and should not be told to
others” (Cambridge Dictionary)

- “something that is kept or meant to be kept unknown or
unseen by others” (Oxford English Dictionary)

- “something kept from the knowledge of others” (Merriam-
Welbster)



\What is a secret? Fundamentally about

knowledge and ignorance

- "a piece of knowledge that is hidden and intended to be
kept hidden” (Wiktionary)

- “a piece of information that is only known by one person
or a few people and should not be told to
others” (Cambridge Dictionary)

- “something that is kept or meant to be kept unknown or
unseen by others” (Oxford English Dictionary)

- “something kept from the knowledge of others” (Merriam-
Welbster)



In this paper we

Formalise secrets (more precisely: secretly knowing)

Using the standard framework for reasoning about
knowledge and ignorance: modal epistemic logic

Key question: what are the (epistemic) properties of
secretly knowing?

ntroduce a modality for secretly knowing and study its
oroperties
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<NOWINg

a secretly knows ¢

(1) a knows ¢ Kap
2) any other agent b does not know ¢ Ny, " Epp
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Ka /\b;éa ﬁKbSO
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Epistemic model: M = (W, ~,V) ~aC W x W eq. rel., V : W — 2PTop

M,wpE=p iff w e V(p).

M, w = —p ifft M,w & .

Mwe=opANy it MwgEyepand M, w = 9.

M,wkEK,p iff Y eW,if w~y ', then M, w' = .

M,w = S,p iff Vw'~,w M,w &= ¢ and Vb # q,
Ju~pw’ M, u = —p.

Have that: M, w = S, o< M,w = K,0o N K, /\b#a - Ky




The secretly-knowing modality

Epistemic model: M = (W, ~,V)

M,w = p
M,w :—ugp
M,w = @AY
M,w = S,0

1t
1t
1t

iff

w € V(p).
M, w = .

Lg:
viu=pl| Y| (WAY) ] S

~oC W x W eq. rel.,, V : W — 2FropP

M, w = @ and M,w = 1.

Vw'~,w M, w = ¢ and Vb # a,

Ju~pw’ M, u




Properties of secretly knowing: interaction axioms

Interaction axioms for S, and K,

(S)
(4SK)

(5SK)

)
KS)

(P

(N
(NSK1)
(NSK2)
(NC)

S Koo N K, (/\b#a ﬁKbgp)
Sao — K S.0

5,0 — K5,

Def. of 5,

Positive secret
knowledge introspection
Negative secret
knowledge introspection
Secret privacy

Secret unknowability
Knowledge is no secret
Ignorance 1s no secret
Secret neg. completeness

(a 7 0)



Properties of secretly knowing: interaction axioms
between agents

Interaction axioms for S, and S5,

(Ex1) S,p — —Spp Secret exclusivity
(Ex2) S,7S5.,0 — —=Sp—Spp Higher-order secret exclusivity
(N1) =54 5pp No secret secrets

(N2)  —S5,-Spp No secret non-secrets
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(T) Sap — @ Secret veridicality
(4) Sa — S50 Secret introspection
(C) (Sap ASa) = Sa(p AY) Secret combination
(D) Sap — 1S, Secrets partiallity
(T) =S, T No tautological secrets
(L) =S5, L No contradictory secrets

Rules for S,

(RE) From ¢ <> ¢ infer S, <+ S,v0  Replacement of equivalents
(Nnec) From ¢ infer =S, Negative necessitation
(Dnec) From ¢ infer =S,—¢ Diamond necessitation
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Axioms for S,
K (0 —

Existing résults:

— (S, 0 —= S, Secret _distribution

ECK: completeness proof (for neighbourhood semantics) by
van der Putte and McNamara currently under submission
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Related work

- Gossip protocols (Attamah et al., 2014; Apt et al., 2016;
Attamah et al., 2017; Apt et al., 2018)

- Modal logics of access control (Abadi et al., 1993; Abadi,
2003; Garg and Abadi, 2008; Aceto et al., 2010; Fong,
2011)

+ Secrets most often taken as a primary notion rather than
derived from more primitive models of knowledge

- E.g., Attamah et al. 2014/2017:

a knows the secret of b: K, BV K,—B
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Common knowledge, belief, and dynamics of lying
(suggestion from reviewer)

7= Sap — C1{a,b} (KaSO A —legp) C{a,b} (Ba_'SO A _'Bb_'SO)

precond. for "a is lying to b”
(van Ditmarsch, 2013)



Road ahead

- Generalisation: “...known by a few people...”
- Group knowledge
+ Secrets vs. mysteries

- We abstracted away all non-gpistemic properties of
secrets, such as intention

“...Intended to be kept hidden...”



