The Logic of Secrets

LAMAS 2020, 8 May 2020

Thomas Ågotnes

University of Bergen, Norway Southwest University (SWU), China

Zuojun Xiong, SWU Yuzhi Zhang, SWU

Secrets

- Of fundamental importance in, e.g.,
 - safety and security
 - cryptography
 - authentication
 - access control
 - •
 - (and in business and politics and romance and..)

What is a secret?

- "a piece of knowledge that is hidden and intended to be kept hidden" (Wiktionary)
- "a piece of information that is only known by one person or a few people and should not be told to others" (Cambridge Dictionary)
- "something that is kept or meant to be kept unknown or unseen by others" (Oxford English Dictionary)
- "something kept from the knowledge of others" (Merriam-Webster)

What is a secret?

Fundamentally about **knowledge** and **ignorance**

- "a piece of knowledge that is hidden and intended to be kept hidden" (Wiktionary)
- "a piece of information that is only known by one person or a few people and should not be told to others" (Cambridge Dictionary)
- "something that is kept or meant to be kept unknown or unseen by others" (Oxford English Dictionary)
- "something kept from the knowledge of others" (Merriam-Webster)

In this paper we

- Formalise secrets (more precisely: secretly knowing)
- Using the standard framework for reasoning about knowledge and ignorance: modal epistemic logic
- Key question: what are the (epistemic) properties of secretly knowing?
- Introduce a modality for secretly knowing and study its properties

$$S_a \varphi$$

a secretly knows φ

a secretly knows φ

a secretly knows φ

(1) $a \text{ knows } \varphi$

a secretly knows φ

(1) $a \text{ knows } \varphi$

 $K_a \varphi$

a secretly knows φ

(1) $a \text{ knows } \varphi$ $K_a \varphi$

(2) any other agent b does not know φ

a secretly knows φ

(1)
$$a \text{ knows } \varphi$$
 $K_a \varphi$

(2) any other agent b does not know
$$\varphi \qquad \bigwedge_{b\neq a} \neg K_b \varphi$$

a secretly knows φ

(1) $a \text{ knows } \varphi$ $K_a \varphi$

(2) any other agent b does not know φ $\bigwedge_{b\neq a} \neg K_b \varphi$

(2') a knows that any other agent b does not know φ

a secretly knows φ

(1)
$$a \text{ knows } \varphi$$

$$K_a\varphi$$

(2) any other agent b does not know
$$\varphi$$

$$\bigwedge_{b\neq a} \neg K_b \varphi$$

(2') a knows that any other agent b does not know φ

$$K_a \bigwedge_{b \neq a} \neg K_b \varphi$$

a secretly knows φ

(1)
$$a \text{ knows } \varphi$$

$$K_a\varphi$$

(2) any other agent b does not know φ

$$\bigwedge_{b\neq a} \neg K_b \varphi$$

(2') a knows that any other agent b does not know φ

$$K_a \bigwedge_{b \neq a} \neg K_b \varphi$$

(2") a knows that any other agent b does not know whether φ

a secretly knows φ

(1) $a \text{ knows } \varphi$

$$K_a \varphi$$

(2) any other agent b does not know φ

$$\bigwedge_{b\neq a} \neg K_b \varphi$$

(2') a knows that any other agent b does not know φ

$$K_a \bigwedge_{b \neq a} \neg K_b \varphi$$

(2") a knows that any other agent b does not know whether φ

$$K_a \bigwedge_{b \neq a} (\neg K_b \varphi \land \neg K_b \neg \varphi)$$

a secretly knows φ

(1) $a \text{ knows } \varphi$

(2) any other agent b does not know φ

(2') a knows that any other agent b does not know φ

$$K_a \bigwedge_{b \neq a} \neg K_b \varphi$$

(2") a knows that any other agent b does not know the entropy depends on the entropy d

$$K_a \bigwedge_{b \neq a} (\neg K_b \varphi \land \neg K_b \neg \varphi)$$

a secretly knows φ

(1) $a \text{ knows } \varphi$

(2) any other agent b does not know φ

(2') a knows that any other agent b does not know φ

$$K_a \bigwedge_{b \neq a} \neg K_b \varphi$$

(2") a knows that any other agent b does not know the entry φ

$$K_a \bigwedge_{b \neq a} (\neg K_b \varphi \land \neg K_b \neg \varphi)$$

$$K_a \varphi \wedge K_a \bigwedge_{b \neq a} \neg K_b \varphi$$

 $\mathcal{L}_{SK}: \varphi ::= p \mid \neg \varphi \mid (\varphi \land \varphi) \mid K_a \varphi \mid S_a \varphi$

$$\mathcal{L}_{SK}$$
:

$$\varphi ::= p \mid \neg \varphi \mid (\varphi \land \varphi) \mid K_a \varphi \mid S_a \varphi$$

Epistemic model:
$$M = (W, \sim, V)$$
 $\sim_a \subseteq W \times W$ eq. rel., $V: W \to 2^{\mathsf{Prop}}$

```
\mathcal{L}_{SK}:
\varphi ::= p \mid \neg \varphi \mid (\varphi \wedge \varphi) \mid K_a \varphi \mid S_a \varphi
                                                           \sim_a \subseteq W \times W eq. rel., V: W \to 2^{\text{Prop}}
Epistemic model: M = (W, \sim, V)
                    iff w \in V(p).
 M,w \models p
                        iff M, w \not\models \varphi.
 M,w \models \neg \varphi
                            iff
 M, w \models \varphi \wedge \psi
                                        M, w \models \varphi \text{ and } M, w \models \psi.
                           iff \forall w' \in W, if w \sim_a w', then M, w' \models \varphi.
 M,w \models K_a \varphi
                            iff \forall w' \sim_a w \ M, w' \models \varphi \text{ and } \forall b \neq a,
 M,w \models S_a \varphi
                                         \exists u \sim_b w' \ M, u \models \neg \varphi.
```

```
\mathcal{L}_{SK}:
\varphi ::= p \mid \neg \varphi \mid (\varphi \land \varphi) \mid K_a \varphi \mid S_a \varphi
                                                           \sim_a \subseteq W \times W eq. rel., V: W \to 2^{\text{Prop}}
Epistemic model: M = (W, \sim, V)
                    iff w \in V(p).
 M,w \models p
                        iff M, w \not\models \varphi.
 M, w \models \neg \varphi
                                iff M, w \models \varphi \text{ and } M, w \models \psi.
 M, w \models \varphi \wedge \psi
                           iff \forall w' \in W, if w \sim_a w', then M, w' \models \varphi.
 M,w \models K_a \varphi
                                iff \forall w' \sim_a w \ M, w' \models \varphi \text{ and } \forall b \neq a,
 M,w \models S_a \varphi
                                         \exists u \sim_b w' \ M, u \models \neg \varphi.
```

Have that: $M, w \models S_a \varphi \Leftrightarrow M, w \models K_a \varphi \wedge K_a \bigwedge_{b \neq a} \neg K_b \varphi$

$$\mathcal{L}_S: \\ \psi ::= p \mid \neg \psi \mid (\psi \land \psi) \mid S_a \psi$$

Epistemic model:
$$M = (W, \sim, V)$$
 $\sim_a \subseteq W \times W$ eq. rel., $V : W \to 2^{\text{Prop}}$ $M, w \models p$ iff $w \in V(p)$. $M, w \models \neg \varphi$ iff $M, w \not\models \varphi$.

$$M, w \models \varphi \land \psi$$
 iff $M, w \models \varphi$ and $M, w \models \psi$.

$$M, w \models S_a \varphi$$
 iff $\forall w' \sim_a w \ M, w' \models \varphi \ \text{and} \ \forall b \neq a,$
 $\exists u \sim_b w' \ M, u \models \neg \varphi.$

Properties of secretly knowing: interaction axioms

Interaction axioms for S_a and K_a

(S)
$$S_a \varphi \leftrightarrow K_a \varphi \wedge K_a \left(\bigwedge_{b \neq a} \neg K_b \varphi \right)$$

$$(4SK) S_a \varphi \to K_a S_a \varphi$$

(5SK)
$$\neg S_a \varphi \to K_a \neg S_a \varphi$$

(P)
$$S_a \varphi \to (K_a \varphi \land \neg K_b \varphi)$$

$$(NKS) \qquad \neg K_b S_a \varphi$$

$$(NSK1) \quad \neg S_a K_b \varphi$$

$$(NSK2) \quad \neg S_a \neg K_b \varphi$$

(NC)
$$K_a S_a \varphi \vee K_a \neg S_a \varphi$$

Def. of
$$S_a$$

Positive secret knowledge introspection Negative secret knowledge introspection Secret privacy Secret unknowability Knowledge is no secret Ignorance is no secret

Secret neg. completeness

$$(a \neq b)$$

Properties of secretly knowing: interaction axioms between agents

Interaction axioms for S_a and S_b

(Ex1)
$$S_a \varphi \rightarrow \neg S_b \varphi$$

(Ex2)
$$S_a \neg S_a \varphi \rightarrow \neg S_b \neg S_b \varphi$$

$$(N1) \qquad \neg S_a S_b \varphi$$

(N2)
$$\neg S_a \neg S_b \varphi$$

Secret exclusivity
Higher-order secret exclusivity
No secret secrets
No secret non-secrets

Axioms for S_a

(K)
$$S_a(\varphi \to \psi) \to (S_a \varphi \to S_a \psi)$$

(T)
$$S_a \varphi \rightarrow \varphi$$

(4)
$$S_a \varphi \to S_a S_a \varphi$$

(C)
$$(S_a \varphi \wedge S_a \psi) \to S_a(\varphi \wedge \psi)$$

(D)
$$S_a \varphi \to \neg S_a \neg \varphi$$

$$(\top)$$
 $\neg S_a \top$

$$(\bot)$$
 $\neg S_a \bot$

Secret distribution
Secret veridicality
Secret introspection
Secret combination
Secrets partiallity
No tautological secrets
No contradictory secrets

Rules for S_a

(**RE**) From
$$\varphi \leftrightarrow \psi$$
 infer $S_a \varphi \leftrightarrow S_a \psi$

(Nnec) From
$$\varphi$$
 infer $\neg S_a \varphi$

(Dnec) From
$$\varphi$$
 infer $\neg S_a \neg \varphi$

Axioms for S_a

(K)
$$S_a(\varphi \to \psi) \to (S_a \varphi \to S_a \psi)$$

$$(\mathbf{T})$$
 $S_a \varphi \to \varphi$

(4)
$$S_a \varphi \to S_a S_a \varphi$$

(C)
$$(S_a \varphi \wedge S_a \psi) \to S_a(\varphi \wedge \psi)$$

(D)
$$S_a \varphi \to \neg S_a \neg \varphi$$

$$(\top)$$
 $\neg S_a \top$

$$(\bot)$$
 $\neg S_a \bot$

Secret distribution

Secret veridicality

Secret introspection

Secret combination Secrets partiallity

No tautological secrets

No contradictory secrets

Rules for S_a

(**RE**) From
$$\varphi \leftrightarrow \psi$$
 infer $S_a \varphi \leftrightarrow S_a \psi$

(Nnec) From φ infer $\neg S_a \varphi$

(Dnec) From φ infer $\neg S_a \neg \varphi$

Axioms for S_a

(K)
$$S_a(\varphi \to \psi) \to (S_a \varphi \to S_a \psi)$$

(T)
$$S_a \varphi \to \varphi$$

(4)
$$S_a \varphi \to S_a S_a \varphi$$

(C)
$$(S_a \varphi \wedge S_a \psi) \to S_a(\varphi \wedge \psi)$$

(D)
$$S_a \varphi \to \neg S_a \neg \varphi$$

$$(\top)$$
 $\neg S_a \top$

$$(\bot)$$
 $\neg S_a \bot$

Secret distribution

Secret veridicality

Secret introspection

Secret combination Secrets partiallity

No tautological secrets

No contradictory secrets

Rules for S_a

(**RE**) From
$$\varphi \leftrightarrow \psi$$
 infer $S_a \varphi \leftrightarrow S_a \psi$

(Nnec) From φ infer $\neg S_a \varphi$

(Dnec) From φ infer $\neg S_a \neg \varphi$

$$(5) \quad \neg S_a \varphi \to S_a \neg S_a \varphi$$

Axioms for S_a

(K)
$$S_a(\varphi \to \psi) \to (S_a \varphi \to S_a \psi)$$

(T)
$$S_a \varphi \to \varphi$$

(4)
$$S_a \varphi \to S_a S_a \varphi$$

(C)
$$(S_a \varphi \wedge S_a \psi) \to S_a(\varphi \wedge \psi)$$

(D)
$$S_a \varphi \to \neg S_a \neg \varphi$$

$$(\top)$$
 $\neg S_a \top$

$$(\bot)$$
 $\neg S_a \bot$

Secret distribution Secret veridicality Secret introspection

Secret combination
Secrets partiallity
No tautological secrets
No contradictory secrets

Rules for S_a

(**RE**) From
$$\varphi \leftrightarrow \psi$$
 infer $S_a \varphi \leftrightarrow S_a \psi$

(Nnec) From φ infer $\neg S_a \varphi$

(Dnec) From φ infer $\neg S_a \neg \varphi$

$$(5) \not\models \neg S_a \varphi \to S_a \neg S_a \varphi$$

Axioms for S_a

(K)
$$S_a(\varphi \to \psi) \to (S_a \varphi \to S_a \psi)$$

$$(\mathbf{T})$$
 $S_a \varphi \to \varphi$

(4)
$$S_a \varphi \to S_a S_a \varphi$$

(C)
$$(S_a \varphi \wedge S_a \psi) \to S_a(\varphi \wedge \psi)$$

(D)
$$S_a \varphi \to \neg S_a \neg \varphi$$

$$(\top)$$
 $\neg S_a \top$

$$(\bot)$$
 $\neg S_a \bot$

Secret distribution
Secret veridicality
Secret introspection
Secret combination

Secrets partiallity
No tautological secrets
No contradictory secrets

Rules for S_a

(**RE**) From
$$\varphi \leftrightarrow \psi$$
 infer $S_a \varphi \leftrightarrow S_a \psi$

(Nnec) From φ infer $\neg S_a \varphi$

(Dnec) From φ infer $\neg S_a \neg \varphi$

$$(5) \not\models \neg S_a \varphi \to S_a \neg S_a \varphi$$

$$(Nec) \models \varphi \Rightarrow \models S_a \varphi$$

Axioms for S_a

(K)
$$S_a(\varphi \to \psi) \to (S_a \varphi \to S_a \psi)$$

$$(\mathbf{T})$$
 $S_a \varphi \to \varphi$

(4)
$$S_a \varphi \to S_a S_a \varphi$$

(C)
$$(S_a \varphi \wedge S_a \psi) \to S_a(\varphi \wedge \psi)$$

(D)
$$S_a \varphi \to \neg S_a \neg \varphi$$

$$(\top)$$
 $\neg S_a \top$

$$(\bot)$$
 $\neg S_a \bot$

Secret distribution Secret veridicality

Secret introspection

Secret combination Secrets partiallity

No tautological secrets

No contradictory secrets

Rules for S_a

(**RE**) From
$$\varphi \leftrightarrow \psi$$
 infer $S_a \varphi \leftrightarrow S_a \psi$

(Nnec) From φ infer $\neg S_a \varphi$

(Dnec) From φ infer $\neg S_a \neg \varphi$

$$(5) \not\models \neg S_a \varphi \to S_a \neg S_a \varphi$$

$$(Nec) \models \varphi \not\Rightarrow \models S_a \varphi$$

Axioms for S_a

(K)
$$S_a(\varphi \to \psi) \to (S_a \varphi \to S_a \psi)$$

$$(\mathbf{T})$$
 $S_a \varphi \to \varphi$

(4)
$$S_a \varphi \to S_a S_a \varphi$$

(C)
$$(S_a \varphi \wedge S_a \psi) \to S_a(\varphi \wedge \psi)$$

(D)
$$S_a \varphi \to \neg S_a \neg \varphi$$

$$(\top)$$
 $\neg S_a \top$

$$(\bot)$$
 $\neg S_a \bot$

Secret distribution

Secret veridicality

Secret introspection

Secret combination Secrets partiallity

No tautological secrets

No contradictory secrets

Rules for S_a

(**RE**) From
$$\varphi \leftrightarrow \psi$$
 infer $S_a \varphi \leftrightarrow S_a \psi$

(Nnec) From φ infer $\neg S_a \varphi$

(Dnec) From φ infer $\neg S_a \neg \varphi$

Replacement of equivalents

Negative necessitation

Diamond necessitation

$$(5) \not\models \neg S_a \varphi \to S_a \neg S_a \varphi$$

$$(Nec) \models \varphi \not\Rightarrow \models S_a \varphi$$

Axioms for S_a

(K)
$$S_a(\varphi \to \psi) \to (S_a \varphi \to S_a \psi)$$

$$(\mathbf{T})$$
 $S_a \varphi \to \varphi$

(4)
$$S_a \varphi \to S_a S_a \varphi$$

(C)
$$(S_a \varphi \wedge S_a \psi) \to S_a(\varphi \wedge \psi)$$

(D)
$$S_a \varphi \to \neg S_a \neg \varphi$$

$$(\top)$$
 $\neg S_a \top$

$$(\perp)$$
 $\neg S_a \perp$

Secret distribution Secret veridicality

Secret introspection

Secret combination Secrets partiallity

No tautological secrets

No contradictory secrets

Rules for S_a

(**RE**) From
$$\varphi \leftrightarrow \psi$$
 infer $S_a \varphi \leftrightarrow S_a \psi$ R

(Nnec) From φ infer $\neg S_a \varphi$

(Dnec) From φ infer $\neg S_a \neg \varphi$

Replacement of equivalents

Negative necessitation

Diamond necessitation

$$(5) \not\models \neg S_a \varphi \to S_a \neg S_a \varphi \qquad \qquad (\text{Nec}) \models \varphi \not\Rightarrow \models S_a \varphi \not\models \neg S_a \neg (\varphi \to \psi) \to (\neg S_a \neg \varphi \to \neg S_a \neg \psi) \qquad \not\models \neg S_a (\varphi \to \psi) \to (\neg S_a \varphi \to \neg S_a \psi)$$

Axioms for S_a

(K)
$$S_a(\varphi \to \psi) \to (S_a \varphi \to S_a \psi)$$

$$(\mathbf{T})$$
 $S_a \varphi \to \varphi$

$$(4) S_a \varphi \to S_a S_a \varphi$$

(C)
$$(S_a \varphi \wedge S_a \psi) \to S_a(\varphi \wedge \psi)$$

(D)
$$S_a \varphi \to \neg S_a \neg \varphi$$

$$(\top)$$
 $\neg S_a \top$

$$(\perp)$$
 $\neg S_a \perp$

Secret distribution

Secret veridicality

Secret introspection

Secret combination Secrets partiallity

No tautological secrets

No contradictory secrets

Rules for S_a

(**RE**) From
$$\varphi \leftrightarrow \psi$$
 infer $S_a \varphi \leftrightarrow S_a \psi$

(Nnec) From φ infer $\neg S_a \varphi$

(Dnec) From φ infer $\neg S_a \neg \varphi$ Replacement of equivalents

Negative necessitation

Diamond necessitation

 $(\text{Nec}) \models \varphi \implies \models S_a \varphi$

$$(5) \not\models \neg S_a \varphi \to S_a \neg S_a \varphi$$

$$\not\models \neg S_a \neg (\varphi \rightarrow \psi) \rightarrow (\neg S_a \neg \varphi \rightarrow \neg S_a \neg \psi) \qquad \not\models \neg S_a (\varphi \rightarrow \psi) \rightarrow (\neg S_a \varphi \rightarrow \neg S_a \psi)$$

$$\not\models \neg S_a(\varphi \to \psi) \to (\neg S_a \varphi \to \neg S_a \psi)$$

$$(RM) \models \varphi \to \psi \not\Rightarrow \models S_a \varphi \to S_a \psi$$

Axioms for S_a

(K)
$$S_a(\varphi \to \psi) \to (S_a \varphi \to S_a \psi)$$

$$(\mathbf{T})$$
 $S_a \varphi \to \varphi$

$$(4) S_a \varphi \to S_a S_a \varphi$$

(C)
$$(S_a \varphi \wedge S_a \psi) \to S_a(\varphi \wedge \psi)$$

(D)
$$S_a \varphi \to \neg S_a \neg \varphi$$

$$(\top)$$
 $\neg S_a \top$

$$(\bot)$$
 $\neg S_a \bot$

Secret distribution

Secret veridicality

Secret introspection

Secret combination Secrets partiallity

No tautological secrets

No contradictory secrets

Rules for S_a

(**RE**) From
$$\varphi \leftrightarrow \psi$$
 infer $S_a \varphi \leftrightarrow S_a \psi$

(Nnec) From φ infer $\neg S_a \varphi$

(Dnec) From φ infer $\neg S_a \neg \varphi$ Replacement of equivalents

Negative necessitation

Diamond necessitation

$$(5) \not\models \neg S_a \varphi \to S_a \neg S_a \varphi$$

$$\not\models \neg S_a \neg (\varphi \to \psi) \to (\neg S_a \neg \varphi \to \neg S_a \neg \psi) \qquad \not\models \neg S_a (\varphi \to \psi) \to (\neg S_a \varphi \to \neg S_a \psi)$$

$$\sigma a (\varphi)$$

$$(\mathrm{Nec}) \models \varphi \not\Rightarrow \models S_a \varphi$$

$$\not\models \neg S_a(\varphi \to \psi) \to (\neg S_a \varphi \to \neg S_a \psi)$$

$$(RM) \models \varphi \to \psi \not\Rightarrow \models S_a \varphi \to S_a \psi$$

$$\not\models S_a(\varphi \wedge \psi) \to S_a \varphi$$

Axioms for S_a

(K)
$$S_a(\varphi \to \psi) \to (S_a\varphi \to S_a\psi)$$
Secret distribution(T) $S_a\varphi \to \varphi$ Secret veridicality(4) $S_a\varphi \to S_aS_a\varphi$ Secret introspection(C) $(S_a\varphi \wedge S_a\psi) \to S_a(\varphi \wedge \psi)$ Secret combination(D) $S_a\varphi \to \neg S_a \neg \varphi$ Secrets partiallity

No tautological secrets

No contradictory secrets

(D)
$$S_a \varphi \to \neg S_a \neg \varphi$$

$$(\top)$$
 $\neg S_a \top$

$$(\perp)$$
 $\neg S_a \perp$

Rules for S_a

(Nnec) From
$$\varphi \leftrightarrow \psi$$
 infer $S_a \varphi \leftrightarrow S_a \psi$ Replacement of equivalents (Nnec) From φ infer $\neg S_a \varphi$ Negative necessitation (Dnec) From φ infer $\neg S_a \neg \varphi$ Diamond necessitation

$$(5) \not\models \neg S_a \varphi \to S_a \neg S_a \varphi \qquad (\text{Nec}) \models \varphi \not\Rightarrow \models S_a \varphi \not\models \neg S_a \neg (\varphi \to \psi) \to (\neg S_a \neg \varphi \to \neg S_a \neg \psi) \not\models \neg S_a (\varphi \to \psi) \to (\neg S_a \varphi \to \neg S_a \psi) (\text{RM}) \models \varphi \to \psi \not\Rightarrow \models S_a \varphi \to S_a \psi \qquad \not\models S_a (\varphi \land \psi) \to S_a \varphi$$

Axioms for S_a $S_a(\varphi \to \psi) \to (S_a \varphi \to S_a \psi)$ Secret distribution (\mathbf{K}) $S_a \varphi \to \varphi$ (\mathbf{T}) Secret veridicality $S_a \varphi \to S_a S_a \varphi$ Secret introspection (4)(C) $(S_a \varphi \wedge S_a \psi) \to S_a(\varphi \wedge \psi)$ Secret combination (D) $S_a \varphi \to \neg S_a \neg \varphi$ Secrets partiallity $\neg S_a \top$ No tautological secrets No contradictory secrets $\neg S_a \bot$ Rules for S_a

(Nnec) From $\varphi \leftrightarrow \psi$ infer $S_a \varphi \leftrightarrow S_a \psi$ Replacement of equivalents (Nnec) From φ infer $\neg S_a \varphi$ Negative necessitation (Dnec) From φ infer $\neg S_a \neg \varphi$ Diamond necessitation

K+C+RE = ECK = the weakest non-normal modal logic with neighbourhood semantics

$$(RM) \models \varphi \to \psi \not\Rightarrow \models S_a \varphi \to S_a \psi$$

$$\not\models S_a(\varphi \wedge \psi) \to S_a \varphi$$

Axioms for S_a $S_a(\varphi \to \psi) \to (S_a \varphi \to S_a \psi)$ Secret distribution (\mathbf{K}) (\mathbf{T}) $S_a \varphi \to \varphi$ Secret veridicality $S_a \varphi \to S_a S_a \varphi$ Secret introspection (4) $(S_a \varphi \wedge S_a \psi) \to S_a(\varphi \wedge \psi)$ (\mathbf{C}) Secret combination (D) $S_a \varphi \to \neg S_a \neg \varphi$ Secrets partiallity $\neg S_a \top$ No tautological secrets $\neg S_a \bot$ No contradictory secrets

```
(M, w \models S_a \varphi \quad \text{iff} \quad \forall w' \sim_a w \; M, w' \models \varphi \text{ and } \forall b \neq a 
\exists u \sim_b w' \; M, u \models \neg \varphi.
```

K+C+RE = ECK = the weakest non-normal modal logic with neighbourhood semantics

$$(RM) \models \varphi \rightarrow \psi \not\Rightarrow \models S_a \varphi \rightarrow S_a \psi$$

$$\not\models S_a(\varphi \wedge \psi) \to S_a \varphi$$

Axioms for S_a $S_a(\varphi \to \psi) \to (S_a \varphi \to S_a \psi)$ Secret distribution (\mathbf{K}) $S_a \varphi \to \varphi$ (\mathbf{T}) Secret veridicality $S_a \varphi \to S_a S_a \varphi$ Secret introspection (4)(C) $(S_a \varphi \wedge S_a \psi) \to S_a(\varphi \wedge \psi)$ Secret combination (D) $S_a \varphi \to \neg S_a \neg \varphi$ Secrets partiallity $\neg S_a \top$ No tautological secrets No contradictory secrets $\neg S_a \bot$ Rules for S_a

(Nnec) From $\varphi \leftrightarrow \psi$ infer $S_a \varphi \leftrightarrow S_a \psi$ Replacement of equivalents (Nnec) From φ infer $\neg S_a \varphi$ Negative necessitation (Dnec) From φ infer $\neg S_a \neg \varphi$ Diamond necessitation

K+C+RE = ECK = the weakest non-normal modal logic with neighbourhood semantics

$$(RM) \models \varphi \to \psi \not\Rightarrow \models S_a \varphi \to S_a \psi$$

$$\not\models S_a(\varphi \wedge \psi) \to S_a \varphi$$

Axioms for S_a				
(\mathbf{K})	$S_a(\varphi \to \psi) \to (S_a \varphi \to S_a \psi)$	Secret distribution		
(T)	$S_a \varphi \to \varphi$	Secret veridicality		
(4)	$S_a \varphi \to S_a S_a \varphi$	Secret introspection		
(C)	$(S_a \varphi \wedge S_a \psi) \to S_a(\varphi \wedge \psi)$	Secret combination		
(D)	$S_a \varphi \to \neg S_a \neg \varphi$	Secrets partiallity		
(\top)	$\neg S_a \top$	No tautological secrets		
(\bot)	$\neg S_a \bot$	No contradictory secrets		
Rules for S_a				
(RE)	From $\varphi \leftrightarrow \psi$ infer $S_a \varphi \leftrightarrow S_a \psi$	Replacement of equivalents		
(Nnec)	From φ infer $\neg S_a \varphi$	Negative necessitation		
(Dnec)	From φ infer $\neg S_a \neg \varphi$	Diamond necessitation		

K+C+RE = ECK = the weakest non-normal modal logic with neighbourhood semantics

Sa is a ECKT4-modality

Axioms for S_a				
(\mathbf{K})	$S_a(\varphi \to \psi) \to (S_a \varphi \to S_a \psi)$	Secret distribution		
(\mathbf{T})	$S_a \varphi \to \varphi$	Secret veridicality		
(4)	$S_a \varphi \to S_a S_a \varphi$	Secret introspection		
(C)	$(S_a \varphi \wedge S_a \psi) \to S_a(\varphi \wedge \psi)$	Secret combination		
(D)	$S_a \varphi \to \neg S_a \neg \varphi$	Secrets partiallity		
(\top)	$\neg S_a \top$	No tautological secrets		
(\bot)	$\neg S_a \bot$	No contradictory secrets		
Rules for S_a				
(RE)	From $\varphi \leftrightarrow \psi$ infer $S_a \varphi \leftrightarrow S_a \psi$	Replacement of equivalents		
(Nnec)	From φ infer $\neg S_a \varphi$	Negative necessitation		
(Dnec)	From φ infer $\neg S_a \neg \varphi$	Diamond necessitation		

Axioms for S_a				
(K)	$S_a(\varphi \to \psi) \to (S_a \varphi \to S_a \psi)$	Secret distribution		
(\mathbf{T})	$S_a \varphi \to \varphi$	Secret veridicality		
(4)	$S_a \varphi \to S_a S_a \varphi$	Secret introspection		
(C)	$(S_a \varphi \wedge S_a \psi) \to S_a(\varphi \wedge \psi)$	Secret combination		
(D)	$S_a \varphi \to \neg S_a \neg \varphi$	Secrets partiallity		
(\top)	$\neg S_a \top$	No tautological secrets		
(\bot)	$\neg S_a \bot$	No contradictory secrets		
Rules for S_a				
(RE)	From $\varphi \leftrightarrow \psi$ infer $S_a \varphi \leftrightarrow S_a \psi$	Replacement of equivalents		
(Nnec)	From φ infer $\neg S_a \varphi$	Negative necessitation		
(Dnec)	From φ infer $\neg S_a \neg \varphi$	Diamond necessitation		

Conjecture: The language with a single S_a modality is completely axiomatised by ECKT4+T

Axioms for S_a

(K)
$$S_{\alpha}(\varphi \to \psi) \to (S_{\alpha}\varphi \to S_{\alpha}\psi)$$

Secret distribution

Existing results:

ECK: completeness proof (for neighbourhood semantics) by van der Putte and McNamara currently under submission

ECK4: non-trival extension

```
(Nnec) From \varphi \leftrightarrow \psi infer S_a \varphi \leftrightarrow S_a \psi Replacement of equivalents (Nnec) From \varphi infer \neg S_a \varphi Negative necessitation (Dnec) From \varphi infer \neg S_a \neg \varphi Diamond necessitation
```

Conjecture: The language with a single S_a modality is completely axiomatised by ECKT4+T

Axioms for S_a				
(K)	$S_a(\varphi \to \psi) \to (S_a \varphi \to S_a \psi)$	Secret distribution		
(\mathbf{T})	$S_a \varphi \to \varphi$	Secret veridicality		
(4)	$S_a \varphi \to S_a S_a \varphi$	Secret introspection		
(C)	$(S_a \varphi \wedge S_a \psi) \to S_a(\varphi \wedge \psi)$	Secret combination		
(D)	$S_a \varphi \to \neg S_a \neg \varphi$	Secrets partiallity		
(\top)	$\neg S_a \top$	No tautological secrets		
(\bot)	$\neg S_a \bot$	No contradictory secrets		
Rules for S_a				
(RE)	From $\varphi \leftrightarrow \psi$ infer $S_a \varphi \leftrightarrow S_a \psi$	Replacement of equivalents		
(Nnec)	From φ infer $\neg S_a \varphi$	Negative necessitation		
(Dnec)	From φ infer $\neg S_a \neg \varphi$	Diamond necessitation		

Conjecture: The language with a single S_a modality is completely axiomatised by ECKT4+T

Related work

- · Gossip protocols (Attamah et al., 2014; Apt et al., 2016; Attamah et al., 2017; Apt et al., 2018)
- Modal logics of access control (Abadi et al., 1993; Abadi, 2003; Garg and Abadi, 2008; Aceto et al., 2010; Fong, 2011)
- Secrets most often taken as a primary notion rather than derived from more primitive models of knowledge
 - E.g., Attamah et al. 2014/2017:

a knows the secret of b: $K_aB \vee K_a \neg B$

Common knowledge, belief, and dynamics of lying (suggestion from reviewer)

$$C_{\{a,b\}}(K_a\varphi \wedge \neg K_b\varphi)$$

Common knowledge, belief, and dynamics of lying (suggestion from reviewer)

$$C_{\{a,b\}}(K_a\varphi \wedge \neg K_b\varphi)$$

$$C_{\{a,b\}}(B_a\neg\varphi\wedge\neg B_b\neg\varphi)$$

precond. for "a is lying to b" (van Ditmarsch, 2013)

Common knowledge, belief, and dynamics of lying (suggestion from reviewer)

$$\not\models S_a \varphi \to C_{\{a,b\}}(K_a \varphi \land \neg K_b \varphi)$$

$$C_{\{a,b\}}(B_a\neg\varphi\wedge\neg B_b\neg\varphi)$$

precond. for "a is lying to b" (van Ditmarsch, 2013)

Road ahead

- Generalisation: "...known by a few people..."
 - Group knowledge
- Secrets vs. mysteries
- We abstracted away all non-epistemic properties of secrets, such as intention
 - "...intended to be kept hidden..."