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1 INTRODUCTION
Centrality measures—methods for evaluating the nodes’ relative po-

sitions and roles in the network—are among the most fundamental

tools in social network analysis [21]. One of the issues that attracted

attention in the literature is the sensitivity of centrality measures

[8, 12]. This interest is driven by the fact that real-life data about

the links in a network are often incomplete, erroneous, or other-

wise distorted [16]. There are various reasons behind this, many of

which are unintentional, such as the under-reporting of network re-

lationships [24] (e.g., there are many real-life relationships that are

not declared on Facebook) or the errors made by informants while

asked about their ties [14]. The studies that evaluate the effects

of such random distortions typically assume that only a certain

percentage of the (randomly selected) links are known [6, 15, 17, 18]

or there is a noise affecting the weights of the edges [22], and the

analysis focuses on how the centrality-based ranking in such an

incomplete or noisy network differs from the true one.

However, the sensitivity analysis based on random distortions is

inadequate in situations where changes to the network do not occur

by chance but rather as a a result of informed, rational decisions,

i.e., due to manipulation. Since a straightforward modus operandi is
to create fake accounts and/or add fake connections to boost the im-

portance of certain network members and/or diminish others, vari-

ous forms and magnitudes of manipulation are common in social

networks [7, 11]. As a result, the interest in understanding how cen-

trality measures can be manipulated has been recently growing in

the literature. In particular, Crescenzi et al. [9] studied the problem

of maximising Closeness centrality of a node by creating a limited

amount of new edges incident to it. Analogous problems were also

considered for Betweenness centrality [4], eccentricity [10, 20], and

page-rank centralities [1, 19]. Also, Waniek et al. [25, 26] studied
how an “evader” node could rewire a given number of edges in

order to decrease her centrality.
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Since in most cases considered in the above literature obtaining

an optimal solution turned out to be intractable, a typical approach

was to develop a heuristic as opposed to an exact algorithm. The

manipulability of a given centrality was then studied by compar-

ing the ranking of nodes before and after applying the heuristic.

Hence, manipulability was assessed in the context of a particular

heuristic and a particular centrality measure, which often precluded

comparison of the manipulability of different measures.

In this paper, we take a more general approach, where we pose

the question about the theoretical underpinnings behind quantifying
the manipulability of centrality measures. To answer this question,

we take an axiomatic approach and formulate the problem charac-

terized by a network, an evader node, a centrality measure and a

set of allowed actions. We then introduce seven axioms that we

believe are reasonable requirements for a measure of manipulability.

We then prove that there exists only a single measure that satis-

fies all of them. We call it the Average Minimal Actions Required

(AMAR) measure as it is equal to the inverse of the minimum num-

ber of actions that must be taken to manipulate the position of the

evader node in the ranking averaged over all networks. We then use

AMAR to experimentally quantify the manipulability of the four

most popular centrality measures—Degree, Closeness, Betweenness

and Eigenvector.

2 PROBLEM OF MANIPULABILITY
We study the difficulty with which a node—the evader—can affect

its centrality in the network by manipulating the network structure.

We consider undirected graphs 𝐺 = (𝑉 , 𝐸) drawn at random from

a graph distribution G on a defined set of nodes 𝑉 .

The evader, node in 𝑣 , can manipulate the graph through actions.

Such an action can be either adding or removing edges. For a set of

actions 𝑆 , by 𝑆 (𝐺) we denote graph 𝐺 after performing actions in

𝑆 . To allow, for the sake of generality, we do not focus on one set

of allowed actions (e.g., removing edges of the evader), instead, we

allow for the arbitrary action functionA that for each graph returns

the set of allowed actions. Examples of such action functions can

be found at the end of section 3.

By manipulating a centrality of the evader we can understand

either hiding (decreasing the ranking) or exposing (increasing the

https://doi.org/doi


AAMAS’20, May 2020, Auckland, New Zealand Tomasz Wąs, Marcin Waniek, Talal Rahwan, and Tomasz Michalak

A1 A2 A3 A4
B
a
r
a
b
á
s
i
-
A
l
b
e
r
t

0.5

0.6

0.7

0.8

0.9

1.0

8 10 12 14 16 18 20
Network size

M
an

ip
ul

ab
ili

ty

0.4

0.6

0.8

1.0

10 20 30 40 50
Network size

M
an

ip
ul

ab
ili

ty

0.5

0.6

0.7

0.8

0.9

1.0

8 10 12 14 16 18 20
Network size

M
an

ip
ul

ab
ili

ty

0.5

0.6

0.7

0.8

0.9

1.0

8 10 12 14 16 18 20
Network size

M
an

ip
ul

ab
ili

ty

Betweenness Closeness Degree Eigenvector

Figure 1: Fragment of the results of our experiments for one network model. Each column contains results for different set of
actions. Values represent AMAR measure estimated using 400 networks. Colored areas represent 95% confidence intervals.

ranking). Here, we focus on hiding, however all results can be

extended to exposing as well. For a given graph 𝐺0, its node 𝑣 ,

centrality measure 𝐹 and set of actions 𝐴, the impact set is the col-
lection of all subsets of𝐴 that hide 𝑣 (i.e., decrease its ranking when

performed). Formally, 𝐼𝐹
𝐺0,𝑣

(𝐴) = {𝑆 ⊆ 𝐴 : 𝑟𝐹𝑣 (𝐺0) > 𝑟𝐹𝑣 (𝑆 (𝐺0))}.
Finally, we define a measure of manipulability as a function,𝑀 ,

that for a every graph distribution G on space G𝑉 , node 𝑣 ∈ 𝑉 ,

centrality measure 𝐹 , and action function A returns a real value

from the interval [0, 1]. The greater the value, the easier it is for
the evader to hide through manipulation.

3 AMAR MEASURE OF MANIPULABILITY
Definition of a measure of manipulability is very broad. To focus on

more desirable measures of manipulability, we propose properties,

i.e., axioms, that a measure of manipulability should satisfy.

• Unmanipulability: For every graph distribution G, node
𝑣 , centrality measure 𝐹 , and action function A, if it is cer-

tain that no combination of actions will hide an evader, i.e.,

P
(
𝐼𝐹
𝐺,𝑣

(A(𝐺)) = ∅
)
= 1, then the manipulability is zero, i.e.,

𝑀 (G, 𝑣, 𝐹 ,A) = 0.

• Full Manipulability: For every graph distribution G, node

𝑣 , centrality measure 𝐹 , and action function A, it is sure to

hide by any nonempty set of possible actions, i.e.,P
(
𝐼𝐹
𝐺,𝑣

(A)=
{𝑆 ⊆ A(𝐺) : 𝑆 ≠ ∅}

)
= 1, then𝑀 (G, 𝑣, 𝐹 ,A) = 1.

• Weak Dominance: For every graph distribution G, node 𝑣 ,

centrality measures 𝐹 and 𝐹 ′, and action functions A and

A ′
, if 𝐹 and A dominate 𝐹 ′ and A ′

(whenever the evader is

hidden in 𝐹 she is also hidden in 𝐹 ′), i.e., P
(
𝐼𝐹
𝐺,𝑣

(A) = {𝑆 ⊆
A(𝐺) : 𝑆 ≠ ∅}

)
= 1, then 𝐹 and A is less manipulable than

𝐹 ′ and A ′
, i.e.,𝑀 (G, 𝑣, 𝐹 ,A) ≤ 𝑀 (G, 𝑣, 𝐹 ′,A ′) .

• Neutrality: A measure of manipulability should not unrea-

sonably prefer one graph, node or centrality measure over

the other, i.e., for every node 𝑣 , bijections 𝑓 : 𝑉 → 𝑉 and

𝑔 : G𝑉 → G𝑉 centrality measures 𝐹 and 𝐹 ′, and action func-

tionA if 𝐼𝐹
𝐺,𝑣

(A) = 𝐼𝐹
′

𝑔 (𝐺),𝑓 (𝑣) (A) for every 𝐺 ∈ G𝑉 then

𝑀 (G, 𝑣, 𝐹 ,A) = 𝑀 (G′, 𝑓 (𝑣), 𝐹 ′,A), for every graph distri-

butions G and G′
such that PG (𝐺 = 𝑔(𝐺0)) = PG′ (𝐺 = 𝐺0)

for every 𝐺0.

• Redundant Action: For every graph distribution G, node
𝑣 , centrality measures 𝐹 , and action function A, if there

exist an action, which with portability 1 is redundant (if a

set of actions containing 𝑎 hides the evader, then this set

with action 𝑎 removed or exchanged for another action hides

the evader as well), then𝑀 (G, 𝑣, 𝐹 ,A) = 𝑀 (G, 𝑣, 𝐹 ,A − 𝑎),
where (A − 𝑎) (𝐺) = A(𝐺) \ {𝑎} for every 𝐺 .

• Linearity: Manipulability over the combination of two net-

work models is a combination of manipulabilities over these

network models, i.e., For every two graph distributions G
and G′

, node 𝑣 , centrality measure 𝐹 , action function A,

and two constants 𝑥,𝑦 > 0 such that 𝑥 + 𝑦 = 1 it holds that

𝑀 (𝑥G + 𝑦G′, 𝑣, 𝐹 ,A) = 𝑥𝑀 (G, 𝑣, 𝐹 ,A) + 𝑦𝑀 (G′, 𝑣, 𝐹 ,A) .
Our main result is that there exist only one measure of manipula-

bility that satisfies all of our axioms. We will call it Average Minimal
Actions Required (AMAR). It is defined it as the average inverse of

the minimal number of actions required to hide the evader. The

cases in which it is impossible to hide the evader are counted as 0.

Formally, we first define Minimal Actions Required (MAR) func-
tion:

𝑀𝐴𝑅(𝐺, 𝑣, 𝐹, 𝐴) =

0 if 𝐼𝐹

𝐺,𝑣
(𝐴) = ∅,

1

min
𝑆∈𝐼𝐹

𝐺,𝑣
(𝐴 |𝑆 | otherwise.

Then, building upon MAR function, we define Average Minimal

Actions Required (AMAR) as its expected value over graph distribu-

tion, i.e., 𝐴𝑀𝐴𝑅(G, 𝑣, 𝐹 ,A) = E
(
𝑀𝐴𝑅(𝐺, 𝑣, 𝐹,A(𝐺))

)
. Our main

technical result can be summarised by the following theorem

Theorem 3.1. If a measure of manipulability, 𝑀 , satisfies Un-
manipulability, Full Manipulability, Weak Dominance, Neutrality,
Redundant Action, and Linearity, then there exists non-decreasing
function 𝑓 : [0, 1] → [0, 1] such that 𝑓 (0) = 0, 𝑓 (1) = 1, such that
for every graph distributionG, node 𝑣 , centrality measure 𝐹 and action
functionA it holds that𝑀 (G, 𝑣, 𝐹 ,A) = E(𝑓 (𝑀𝐴𝑅(𝐺, 𝑣, 𝐹,A(𝐺))) .
If𝑀 satisfies additional axiom: Normalisation, then 𝑓 is an identity
and𝑀 = 𝐴𝑀𝐴𝑅.

Finally, we estimate the values of 𝐴𝑀𝐴𝑅 measure for different

network models (here, only results for Barabási-Albert model [2]

are presented), four centrality measures: Degree [23], Closeness [3],
Betweenness [13], and Eigeinvector centrality [5]; and four action

functions: All possible changes: A1 (𝐺) = {𝑎 ⊆ 𝑉 : |𝑎 | = 2}, Re-
moving evader’s edges: A2 (𝐺) = {𝑎 ∈ 𝐸 [𝐺] : 𝑣 ∈ 𝑎}, Adding edges
between neighbors: A3 (𝐺) = {𝑎 ⊆ N𝐺 (𝑣) : |𝑎 | = 2 ∧ 𝑎 ∉ 𝐸 [𝐺]},
Local changes: A4 (𝐺) = A2 (𝐺) ∪ A3 (𝐺). The evader in each net-

work is set as a node with the top average ranking according to all

four centrality measures. Results are depicted on the Figure 1.



The Manipulability of Centrality Measures —An Axiomatic Approach AAMAS’20, May 2020, Auckland, New Zealand

REFERENCES
[1] Konstantin Avrachenkov and Nelly Litvak. 2006. The effect of new links on

Google PageRank. Stochastic Models 22, 2 (2006), 319–331.
[2] Albert-László Barabási and Réka Albert. 1999. Emergence of scaling in random

networks. science 286, 5439 (1999), 509–512.
[3] Alex Bavelas. 1950. Communication patterns in task-oriented groups. The Journal

of the Acoustical Society of America 22, 6 (1950), 725–730.
[4] Elisabetta Bergamini, Pierluigi Crescenzi, Gianlorenzo D’angelo, Henning Mey-

erhenke, Lorenzo Severini, and Yllka Velaj. 2018. Improving the betweenness

centrality of a node by adding links. Journal of Experimental Algorithmics (JEA)
23 (2018), 1–5.

[5] Phillip Bonacich. 1972. Factoring and weighting approaches to status scores and

clique identification. Journal of mathematical sociology 2, 1 (1972), 113–120.

[6] Stephen P Borgatti, Kathleen M Carley, and David Krackhardt. 2006. On the

robustness of centrality measures under conditions of imperfect data. Social
networks 28, 2 (2006), 124–136.

[7] Yazan Boshmaf, Ildar Muslukhov, Konstantin Beznosov, and Matei Ripeanu. 2011.

The socialbot network: when bots socialize for fame and money. In Proceedings
of the 27th annual computer security applications conference. ACM, 93–102.

[8] Elizabeth Costenbader and Thomas W Valente. 2003. The stability of centrality

measures when networks are sampled. Social networks 25, 4 (2003), 283–307.
[9] Pierluigi Crescenzi, Gianlorenzo D’angelo, Lorenzo Severini, and Yllka Velaj. 2016.

Greedily improving our own closeness centrality in a network. ACM Transactions
on Knowledge Discovery from Data (TKDD) 11, 1 (2016), 9.

[10] Erik D Demaine and Morteza Zadimoghaddam. 2010. Minimizing the diameter of

a network using shortcut edges. In Scandinavian Workshop on Algorithm Theory.
Springer, 420–431.

[11] Emilio Ferrara, Onur Varol, Clayton Davis, Filippo Menczer, and Alessandro

Flammini. 2016. The rise of social bots. Commun. ACM 59, 7 (2016), 96–104.

[12] Terrill L Frantz and Kathleen M Carley. 2017. Reporting a network’s most-central

actor with a confidence level. Computational and Mathematical Organization
Theory 23, 2 (2017), 301–312.

[13] Linton C Freeman. 1977. A set of measures of centrality based on betweenness.

Sociometry (1977), 35–41.

[14] Linton C Freeman, A Kimball Romney, and Sue C Freeman. 1987. Cognitive

structure and informant accuracy. American anthropologist 89, 2 (1987), 310–325.
[15] Joseph Galaskiewicz. 1991. Estimating point centrality using different network

sampling techniques. Social Networks 13, 4 (1991), 347–386.
[16] Gueorgi Kossinets. 2006. Effects of missing data in social networks. Social

networks 28, 3 (2006), 247–268.
[17] Shogo Murai and Yuichi Yoshida. 2019. Sensitivity analysis of centralities on

unweighted networks. In The World Wide Web Conference. 1332–1342.
[18] Qikai Niu, An Zeng, Ying Fan, and Zengru Di. 2015. Robustness of centrality

measures against network manipulation. Physica A: Statistical Mechanics and its
Applications 438 (2015), 124–131.

[19] Martin Olsen and Anastasios Viglas. 2014. On the approximability of the link

building problem. Theoretical Computer Science 518 (2014), 96–116.
[20] Senni Perumal, Prithwish Basu, and Ziyu Guan. 2013. Minimizing eccentricity in

composite networks via constrained edge additions. In Military Communications
Conference, MILCOM 2013-2013 IEEE. IEEE, 1894–1899.

[21] John Scott. 2017. Social network analysis. Sage.
[22] Santiago Segarra and Alejandro Ribeiro. 2015. Stability and continuity of central-

ity measures in weighted graphs. IEEE Transactions on Signal Processing 64, 3

(2015), 543–555.

[23] Marvin E Shaw. 1954. Group structure and the behavior of individuals in small

groups. The Journal of psychology 38, 1 (1954), 139–149.

[24] Diana Stork and William D Richards. 1992. Nonrespondents in communication

network studies: Problems and possibilities. Group and Organization Management
17, 2 (1992), 193–209.

[25] MarcinWaniek, Tomasz PMichalak, Talal Rahwan, andMichaelWooldridge. 2017.

On the construction of covert networks. In Proceedings of the 16th Conference
on Autonomous Agents and MultiAgent Systems. International Foundation for

Autonomous Agents and Multiagent Systems, 1341–1349.

[26] Marcin Waniek, Tomasz P Michalak, Michael J Wooldridge, and Talal Rahwan.

2018. Hiding individuals and communities in a social network. Nature Human
Behaviour 2, 2 (2018), 139.


	1 Introduction
	2 Problem of Manipulability
	3 AMAR Measure of Manipulability
	References

