
On Computational Tractability for Rational Verification
Julian Gutierrez
Monash University
Melbourne, Australia

Julian.Gutierrez@monash.edu

Muhammad Najib
TU Kaiserslautern

Kaiserslautern, Germany
najib@informatik.uni-kl.de

Giuseppe Perelli
University of Rome, La Sapienza

Rome, Italy
perelli@diag.uniroma1.it

Michael Wooldridge
University of Oxford

Oxford, UK
mjw@cs.ox.ac.uk

ACM Reference Format:
JulianGutierrez,MuhammadNajib, Giuseppe Perelli, andMichaelWooldridge.
2020. On Computational Tractability for Rational Verification. In Proceedings
of the 10th Workshop on Logical Aspects of Multi-Agent Systems (LAMAS
2020), Bastien Maubert, Aniello Murano, Sasha Rubin (eds.), Auckland, New
Zealand, May 2020, IFAAMAS, 3 pages.

1 INTRODUCTION
The formal verification of systems using temporal logics such as
LTL and CTL [6] is a major research area, which has led to the
development of an impressive number of industrial-strength verifi-
cation tools and techniques. Arguably themost successful technique
within formal verification is model checking, which can be done
in polynomial space for LTL specifications and even in polynomial
time for CTL specifications [5]. In the context of multiagent sys-
tems, rational verification forms a natural counterpart of model
checking [9, 10, 18]. This is the problem of checking whether a
given property ϕ, expressed as a temporal logic formula, is satisfied
in a computation of a system that might be generated if agents
within the system choose strategies for selecting actions that form
a game-theoretic (e.g., Nash) equilibrium – a decision problem that
in case of Nash equilibria is denoted as ENASH [10]. Unlike model
checking, rational verification is still in its infancy: the main ideas,
formal models, and reasoning techniques underlying rational verifi-
cation are under development, while current tool support is limited
and cannot yet handle systems of industrial size [13, 16].

One key difficulty is that rational verification is computationally
much harder than model checking, because checking equilibrium
properties requires quantifying over the strategies available to play-
ers in the system. Rational verification is also different from model
checking in the kinds of properties that each technique tries to
check: while model checking is interested in correctness with re-
spect to any possible behaviour of a system, rational verification is
interested only in behaviours that can be sustained by a Nash equi-
librium, when a multiagent system is modelled as a multi-player
game. This, in particular, adds a new ingredient to the verification
problem, as it is now necessary to take into account the preferences
of players with respect to the possible runs of the system. Typically,
in rational verification, such preferences are given by associating an

Proceedings of the 10th Workshop on Logical Aspects of Multi-Agent Systems (LAMAS
2020), Bastien Maubert, Aniello Murano, Sasha Rubin (eds.), May 2020, Auckland, New
Zealand. © 2020 International Foundation for Autonomous Agents and Multiagent
Systems (www.ifaamas.org). All rights reserved. . . . $15.00

Goals Spec. ENASH

LTL LTL 2EXPTIME-complete [10]
GR(1) LTL PSPACE-complete
GR(1) GR(1) FPT
mp LTL PSPACE-complete
mp GR(1) NP-complete

Table 1: Summary of main complexity results.

LTL goal γi with each player i in the game. In this case, rational ver-
ification with respect to a specification ϕ is 2EXPTIME-complete,
regardless of whether the representation of the system is given
succinctly [9, 10] or explicitly as a finite-state labelled transition
graph [8]. In fact, the problem is 2EXPTIME-hard even if ϕ = ⊤

since in such a simpler case any LTL synthesis problem can be
encoded using only the LTL goals of the players in the game.

Here, we address this issue and provide complexity results that
greatly improve on the 2EXPTIME upper bound of the general case.
In particular, we consider games where the goals of players are
represented as either GR(1) formulae (an important fragment of LTL
that can express most response properties of a concurrent and re-
active system [2]), or mean-payoff utility functions (one of the most
studied reward and quality measures used in games for automated
formal verification). In each case, we study the rational verification
problem for system specifications ϕ given as GR(1) formulae and
as LTL formulae, with respect to system models that are formally
represented as concurrent game structures [1]. Our main results,
summarised in Table 1, show that in the cases above mentioned, the
2EXPTIME upper bound can be dramatically improved to settings
where rational verification can be solved in polynomial space, NP,
or even in polynomial time if the number of players is fixed.

Related Work:
Rational verification has been studied for a number of settings,
including iterated Boolean games, reactive modules games, and
concurrent game structures [8–11]. In all cases, the problem is
2EXPTIME-complete, and even undecidable if imperfect informa-
tion is allowed [15]. This work also relates to mean-payoff (mp)
games at large, which are NP-complete for multi-player games [17]
and in NP ∩ coNP for two-player games [19] – and in fact solvable
in quasipolynomial time since they can be polynomially reduced to
two-player turn-based perfect-information parity games [4].

2 GAMES WITH TEMPORAL LOGIC GOALS
In our setting, games are played on (deterministic) concurrent
games structures, certain transition-state structures (i.e., labelled
graphs) where at every state of the structure, players – concurrently
and independently – make choices which determine a unique suc-
cessor state. A game is played by them repeating this process ad
infinitum and, in such a way, defining a unique path in the graph.
Because the states of such graphs are labelled with atomic proposi-
tions, the infinite path built in this way (a play, an execution run
of the system) can be used as a model of a temporal logic formula.
An outcome of a game is such a run, which is then used to check
whether the temporal logic goal of every player is satisfied or not.
Then, for each outcome of the game, the set of players is divided
between “winners” and “losers”, that is, those who get their goal
achieved and those who do not, respectively. As expected, players
will prefer execution runs that satisfy their goal over runs that do
not, giving them an incentive to deviate (i.e., do something different,
use a different strategy) whenever their goal is not achieved if such
a situation can be modified, that is, if they could become winners
by unilaterally changing their current strategy. With this setting in
mind, the concept of Nash equilibrium can be formally defined.

ENASH is the decision problem that asks whether some tempo-
ral logic formula ϕ, which represents a property that an external
principal wants to see satisfied, is satisfied on an execution run of
the system that can be sustained by some Nash equilibrium (a Nash
equilibrium run) of the game. Then, while players only care about
the satisfaction of their temporal logic goals, the external principal
only cares about the satisfaction of ϕ, in particular, in any Nash
equilibrium run of the concurrent game structure. Based on this
informal description of the game, we now let players’ goals γ be
given by GR(1) formulae and consider two cases: games where ϕ is
an LTL formula and games where ϕ is a GR(1) formula.

2.1 Solving ENASH
A general algorithm to solve ENASH, regardless of whether ϕ is a
GR(1) formula or an LTL formula, is the following procedure:

(1) Guess a setW of “winners” in the game;
(2) For each “loser” j in the game, compute the set of states in the

concurrent game structure from which j can be prevented
from having a beneficial deviation – its punishment region;

(3) Remove states and transitions in the concurrent game struc-
ture according to the punishment regions of all losers;

(4) Check whether there exists an execution run π of the result-
ing (pruned) structure such that π |= ϕ ∧

∧
i ∈W γi holds.

The bottlenecks of the above procedure are steps 1 and 4. If ϕ is
an LTL formula, step 1 is not an issue since we can do the rest of
the algorithm using only polynomial space (note that step 4 is an
existential LTL model checking problem) for everyW , leading to
an overall PSPACE complexity. On the other hand, if ϕ is a GR(1)
formula, we can do something better. In step 4, we can, instead,
transform the problem into an emptiness check of a deterministic
Streett word automaton, which can be solved in time that is poly-
nomial in the automaton’s index, given by the goals in the game,
and singly exponential in the number of players. Assuming that the
set of players will be fixed, we can then conclude that the problem
is FPT with respect to the number of players in the game.

3 GAMES WITH MEAN-PAYOFF GOALS
We now consider concurrent game structures where, in addition to
the propositional variables labelling the states of the structure, one
also has, for each player, integers labelling such states. Then, every
execution run will also be associated with an infinite sequence of
n-tuples of integer numbers (w1, . . . ,wn)(w

′
1, . . . ,w

′
n) . . ., which

will define, for each player, a mean-payoff value for such a player.
Then, in this case, instead of having goals given by GR(1) formulae,
each player i will simply want to maximise a mean-payoff value
associated with the outcomes of the game, that is, each player i will
want to maximise the mean-payoff value of the infinite sequence
wiw

′
iw

′′
i Naturally, a player will prefer higher mean-payoff

values than lower ones. Such a preference relation will define a
notion of Nash equilibrium and consequently will determine a
collection of Nash equilibrium execution runs in the system.

3.1 Solving ENASH
As before, we will consider two cases: games where ϕ is a GR(1)
formula, and games where ϕ is an LTL formula. In the latter case,
we can use a decision procedure that is slightly similar to the one
described in the previous section. Instead of guessing “winners” in
the game, we guess punishment values for every player in the game.
Using such punishment values we can prune the concurrent game
structure so that the gamewill only contain outcomeswithout states
from which a player can have a beneficial deviation, that is, enforce
an execution runwith a highermean-payoff value. Once this is done,
we can use LTLLim, an extension of LTL where statements about
mean-payoff values over a given (weighted/quantitative) graph as
the one we consider here can be made [3]. Model checking in our
case can be done in PSPACE, which provides the desired upper
bound. And, in case ϕ is a GR(1) specification, again, we can do
something better. Following [12], we define a linear program that
characterises the existence of Nash equilibrium runs in this setting,
and that can be used to provide an NP upper bound for the problem.

4 OTHER VERIFICATION PROBLEMS
ENASH is, arguably, the most fundamental problem in the rational
verification framework, but it is not the only one. The two other
key problems are ANASH and NONEMPTINESS. The former is
the dual problem of ENASH, which asks, given a game G and a
specification ϕ, whether ϕ is satisfied on all Nash equilibria of G.
The latter simply asks whether the game G has at least one Nash
equilibrium. We conclude from our results, that while ANASH for
GR(1) games is also PSPACE and FPT, respectively, in case of LTL
and GR(1) specifications, for mp games the problem is, respectively,
PSPACE and coNP, in each case. In addition, we also conclude that
whereas NONEMPTINESS for GR(1) games is FPT, for mp games
is NP-complete. These results contrast with those when players’
goals are general LTL formulae, where all problems are 2EXPTIME-
complete. These results also contrast with those presented in [7],
where it is shown that with LTL goals all problems in the rational
verification framework can be reduced to NONEMPTINESS, which
cannot be the case here, unless the polynomial hierarchy collapses.

Acknowledgement. This extended abstract informally describes
and summarises work already presented at IJCAI [14] (Aug., 2019).

REFERENCES
[1] Rajeev Alur, Thomas Henzinger, and Orna Kupferman. 2002. Alternating-Time

Temporal Logic. Journal of the ACM 49, 5 (2002), 672–713.
[2] Roderick Bloem, Barbara Jobstmann, Nir Piterman, Amir Pnueli, and Yaniv Sa’ar.

2012. Synthesis of Reactive(1) designs. J. Comput. System Sci. 78, 3 (2012),
911–938.

[3] Udi Boker, Krishnendu Chatterjee, Thomas Henzinger, and Orna Kupferman.
2014. Temporal Specifications with Accumulative Values. ACM Transactions on
Computational Logic 15, 4 (2014), 27:1–27:25. https://doi.org/10.1145/2629686

[4] Cristian S. Calude, Sanjay Jain, Bakhadyr Khoussainov,Wei Li, and Frank Stephan.
2017. Deciding Parity Games in Quasipolynomial Time. In STOC. ACM, 252–263.

[5] Edmund M. Clarke, Orna Grumberg, Daniel Kroening, Doron Peled, and Helmut
Veith. 2018. Model Checking (2nd edition). MIT Press.

[6] E. Allen Emerson. 1990. Temporal and Modal Logic. In Handbook of Theoretical
Computer Science Volume B: Formal Models and Semantics. Elsevier, 996–1072.

[7] Tong Gao, Julian Gutierrez, and Michael Wooldridge. 2017. Iterated Boolean
Games for Rational Verification. In AAMAS. ACM, 705–713.

[8] Julian Gutierrez, Paul Harrenstein, and Michael Wooldridge. 2015. Expresiveness
and Complexity Results for Strategic Reasoning. In CONCUR (LIPIcs), Vol. 42.
Schloss Dagstuhl, 268–282.

[9] Julian Gutierrez, Paul Harrenstein, and Michael Wooldridge. 2015. Iterated
Boolean Games. Information and Computation 242 (2015), 53–79.

[10] Julian Gutierrez, Paul Harrenstein, and Michael Wooldridge. 2017. From Model
Checking to Equilibrium Checking: Reactive Modules for Rational Verification.
Artificial Intelligence 248 (2017), 123–157.

[11] Julian Gutierrez, Paul Harrenstein, and Michael Wooldridge. 2017. Reasoning
about Equilibria in Game-like Concurrent Systems. Annals of Pure and Applied

Logic 168, 2 (2017), 373–403.
[12] Julian Gutierrez, Aniello Murano, Giuseppe Perelli, Sasha Rubin, and Michael

Wooldridge. 2017. Nash Equilibria in Concurrent Games with Lexicographic
Preferences. In IJCAI. 1067–1073. https://doi.org/10.24963/ijcai.2017/148

[13] Julian Gutierrez, Muhammad Najib, Giuseppe Perelli, and Michael Wooldridge.
2018. EVE: A Tool for Temporal Equilibrium Analysis. InATVA (LNCS), Vol. 11138.
Springer, 551–557.

[14] Julian Gutierrez, Muhammad Najib, Giuseppe Perelli, and Michael J. Wooldridge.
2019. On Computational Tractability for Rational Verification. In IJCAI, Sarit
Kraus (Ed.). ijcai.org, 329–335.

[15] Julian Gutierrez, Giuseppe Perelli, and Michael Wooldridge. 2018. Imperfect
Information in Reactive Modules games. Information and Computation 261, Part
(2018), 650–675.

[16] Alexis Toumi, Julian Gutierrez, and Michael Wooldridge. 2015. A Tool for the
Automated Verification of Nash Equilibria in Concurrent Games. In ICTAC (LNCS),
Vol. 9399. Springer, 583–594.

[17] Michael Ummels and Dominik Wojtczak. 2011. The Complexity of Nash Equi-
libria in Limit-Average Games. In CONCUR. 482–496. https://doi.org/10.1007/
978-3-642-23217-6_32

[18] Michael Wooldridge, Julian Gutierrez, Paul Harrenstein, Enrico Marchioni,
Giuseppe Perelli, and Alexis Toumi. 2016. Rational Verification: From Model
Checking to Equilibrium Checking. In AAAI. AAAI Press, 4184–4191.

[19] Uri Zwick and Mike Paterson. 1996. The Complexity of Mean Payoff Games on
Graphs. Theoretical Computer Science 158, 1 (1996), 343 – 359. https://doi.org/10.
1016/0304-3975(95)00188-3

https://doi.org/10.1145/2629686
https://doi.org/10.24963/ijcai.2017/148
https://doi.org/10.1007/978-3-642-23217-6_32
https://doi.org/10.1007/978-3-642-23217-6_32
https://doi.org/10.1016/0304-3975(95)00188-3
https://doi.org/10.1016/0304-3975(95)00188-3

	1 Introduction
	2 Games with Temporal Logic Goals
	2.1 Solving ENASH

	3 Games with Mean-payoff Goals
	3.1 Solving ENASH

	4 Other Verification Problems
	References

