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ABSTRACT
Reactive behaviour in BDI-based models and architectures adopted

in agent programming is typically specified in terms of reactive

plans not bound to any specific goal. In this paper, we present and

discuss an extension of the plan model used in BDI programming

languages in which goal-based plans encapsulate both proactive

and reactive behaviour. This brings important benefits both to the

practice of agent programming and in supporting agent reasoning at

runtime. The paper first introduces the model formally, abstracting

away from particular programming languages. The approach is then

evaluated through concrete implementations based on two existing

agent programming platforms, namely Jason andASTRA. The paper

reports on experiments showing that the approach provides for

elegant programming and can also be efficient.
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1 INTRODUCTION
The BDI architecture and model has been either the basis or at least

an important influence in many agent programming languages.

This has led to many concrete computational models and platform

implementations, even if the basic programming language is a tradi-

tional one, for example PRS [17], dMARS [11], JAM [16], JACK [32],

and SPARK [20], to name just a few. It also leads to the creation of

various programming languages and variants of those languages,

whether abstract (and used mostly for formalisation of ideas re-

lated to BDI) or more practical, for example AgentSpeak(L) [25],

CAN [28], Jason [1], ASTRA [7], and Gwendolen [10], again to

name just a few.

Needless to say, plans have a key role in programming BDI

agents, regardless of the particular approach. Plans define the agent

know-how, they express a course of action that can be used to bring

about a state-of-affairs, particularly those that are desirable to the

agent, hence plans have a strong relation to goal-orientation. A

plan has either a goal to achieve or to maintain and so they form

an essential part of agents’ behaviour.

However, the plan model adopted in all concrete BDI-based

computational platforms, from the very early days, have pitfalls

that long-term experience has helped surface. One of them is a

lack of structure with the plan library, and in particular lack of

encapsulation. A plan library is usually just a collection of plans to

achieve individual (top-level) goals and their subgoals. However,

the intentional context in which a subgoal needs to be pursued is
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relevant, that is, in many cases the agent has few top-level goals, and

subgoals might need to be pursed differently depending on which

top-level goal has originated the subgoal. Another typical problem

is that, because agents need to be reactive as well as proactive, it

has been tempting to just use a plan programming construct to

specify reactive behaviour, but again these may vary significantly

depending on the context of the overall top-level goals that the

agent is currently trying to achieve.

This paper puts forward an approach to address these problems.

It preserves goal-orientation while being cleanly event-driven. Most

importantly, it increases encapsulation in defining the strategies

for plans to achieve/maintain goals. This not only has a clear im-

pact both at the design and programming activities, but also for

reasoning about gals and intentions at runtime. In particular, we

conjecture it may have an impact in the intention progression prob-

lem [18].

We first present our extended plan model formally and in a

language-independent way. Then, we present implementations

of our approach extending two different existing BDI platforms,

namely Jason and ASTRA. We show experimental results to assess

how the extended platforms compare to the original ones. We then

discuss how this approach addresses the pitfalls of traditional BDI

plan models.

2 BACKGROUND AND MOTIVATION
The Belief-Desire-Intention (BDI) architecture is one of the major

models adopted in academia and industry for developing intelligent

agents and in particular practical reasoning agents. One of the first

concrete architectures based on BDI was PRS [17], implemented

then by the dMARS system [11] and applied in several significant

multi-agent applications. A whole range of practical development

efforts relating to BDI systems have been undertaken, either as

refinements of PRS and dMARS or more loosely based on broader

BDI principles, including PRS-Lite, JAM, JACK, Jadex. Besides sys-

tems, several agent programming languages have been developed

based on BDI (surveys can be found here [2, 3]). Among them, we

mention here AgentSpeak(L) [25] — an abstract language based on

an abstraction of the PRS architecture, stripped down to its bare

essentials, later extended and implemented by concrete Agent Pro-

gramming platforms such as Jason and ASTRA — and influencing

many languages including the more recent CANPlan [29], which is

equipped with a formal specification.

In spite of specific differences, all BDI computational models

are based on the same conceptual model for plans and intentions.

A plan represents how to bring about a state of affairs. Intentions
represent a specific state of affairs that the agent is committed to

achieving and the activity used for that purpose. A plan then is a

recipe specifying the course of action that may be undertaken by an

agent in order to achieve such states of affairs. Plans are collected
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in agent’s plan library, representing its procedural knowledge or
know-how.

The issues that we focus on this paper are about how this con-

ceptual model is then reified in concrete computational and pro-

gramming models. Each plan is typically defined by some key com-

ponents, including [11]:

• a trigger or invocation condition, which specifies the circum-

stances under which the plan should be considered relevant,

usually specified in terms of events;
• a context, or pre-condition, specifying the circumstances un-

der which the execution of the plan may commence and the

plan considered applicable;

• a body, defining a potentially quite complex course of actions

which may consist of both goals (or subgoals) and primitive

actions.

This model is pervasively used, from the original dMARS specifica-

tion up to the more recent CANPlan [29].

By exploiting the model in practice in AOP, two main relevant

issues emerged, as described below.

Plans without explicit goals. The invocation condition could be

both events concerning new goals or belief changes related to per-

cepts from the environment or data in general. The latter case

makes it possible to define reactive behaviours and data-driven /

event-driven processing. For example, the plan “makeTea” may be

triggered by the event “thirsty” [11].

By adopting this choice in practice, a couple of important char-

acteristics can be noted. First, in plans triggered by invocation con-

ditions that concern environment/data events, the state of affairs

remains implicit, in the mind of the designer. This has a drawback

at runtime: intentions that are created to execute the plan are task-

less/goal-less, i.e., they do not have an explicit “state of affairs” they

are associated with. From a design/engineering point of view, the

reactive behaviour of an agent is always motivated by some task

to be achieved, a “state of affairs” to be achieved. In the example,

the goal is to make a tea, to have a new tea. A robot that reacts to

a low-battery charge event and goes back to the recharge station

does so due to a maintenance task that could be described as “keep

the battery level not lower than some threshold”.

Second, this choice impacts strongly on modularity and reuse.

From the example, there could be multiple reasons for making a

tea, not only being thirsty, and the plan – as a recipe for making tea

– would be the same. However, if we put the triggering condition

in the plan, that plan cannot be reused for different triggering

conditions. In this case the invocation condition appears better

modelled as the motivation for adopting some specific goal (“to

make a cup of tea”) and we can have different plans for it depending

on the context. But being thirsty in this case would not be part the

plan itself.

Reactive behaviour in plan strategy. The plan body is meant to

represent a recipe for how to achieve some state of affairs. In many

relevant cases in practice, such a recipe may include the capability

to asynchronously react to events from the environment. In some

cases this is about critical situations – e.g., low battery for a robot

cleaning the floor. In some other cases, it could be strongly related

to the designed strategy to fulfil the task – e.g., reacting to messages

received or monitoring some state of the ongoing work done in

the environment. In the general case, the strategy used to achieve

the state of affairs may be required to flexibly mix proactive and

reactive behaviour, but in the context of the same intention.

The model for plans (body) in BDI — i.e., a sequence of actions

and (sub-)goals — does not make this straightforward. If we need

to react to some event e in the context of a plan to achieve some

goal G, then a different plan specifying e as triggering condition

must be used. The effect is a poor level of encapsulation about the

plan strategy, which must be necessarily specified in terms of a set

of unrelated plans. As in the previous case, the relation between

the plans is in the mind of the designer, but is neither expressed

explicitly in the source code nor is it captured by intentions at

runtime.

To deal with these issues, we propose an extension of the plan

model adopted in BDI agents which:

• enforces goal/task orientation, that is: every plan p has an

explicit account for the task t to be either achieved or main-

tained. The unique invoking condition is always a goal/task

to be achieved or maintained. This implies that every inten-

tion at runtime – as a plan in execution – is bound to an

explicit goal.

• extends the plan specification to include both subplans and

reactive behaviour, besides a plan body having squences

of actions and subgoals, so as to get full encapsulation of

proactivity and reactivity in the definition of the strategy of

a plan.

3 PROPOSAL
In this section, our proposal is presented formally and independent

of a particular programming language. This makes our approach

more easily applicable to the various existing agent programming

languages. Later in this paper we show how this has been imple-

mented in two different agent platforms.

The presentation is formal yet language independent with the

help of an abstract syntax for relevant structures such as plans,

intentions, events, and so forth. The grammar below formally de-

fines sets of such structures which can then be formally used in

an algorithm of how a general BDI interpreter should be adapted

to follow our approach. However, because there is no concrete

syntax associated with those sets BDI structures, this makes any

BDI-inspired platform that has particular representations for those

structures able to use the approach in a straightforward manner.

The abstract syntax is shown in Figure 1.

ag ::= bs gs gps
bs ::= b1 . . . bn (n ≥ 0)
gs ::= g1 . . . gn (n ≥ 0)
ps ::= p1 . . . pn (n ≥ 1)
p ::= g fc fд h pr1 . . . prn (n ≥ 0)
r ::= (+b | -b) f h
pr ::= p | r
t ::= g | +b | -b
h ::= d1 . . . dn (n ≥ 0)
d ::= a | g

Figure 1: Abstract Syntax
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The grammar in Figure 1 defines all structures of interest to our

BDI approach, where b is a metavariable standing for an individual

belief an agent may have, д a goal, a is an action, and f a logical

formula. Note that how these and other data structures required

in our presentation here are effectively expressed in a concrete

programming platform is irrelevant from the abstract syntax point

of view and therefore easy to adapt to whatever notion of such

structures that a particular BDI programming language platform

has.

Overall the grammar states that an agent is defined as a set of

(initial) beliefs, a set of (initial) goals, and a set of plans. Each plan

pi ∈ ps is a tuple that has an event, a formula often referred to as

the context or guard for the plan (a formula checked when we are

selecting a plan for an event), another formula that in [26] has been

named the goal condition (the goal is achieved when/if this formula

becomes true given the agents beliefs). Plans p and reactive rules r
are triggered (t ) by a goal or changes (addition ‘+’ or deletion ‘−’)

in beliefs, respectively. The body (h) of plans and rules might be

empty but otherwise is sequence of deeds (d), a name used in [10]

to refer to either goals to achieve or actions to execute. The deeds in

a plan body start to be executed when an instance of that plan/rule

becomes an intention. Within a plan there is a finite sequence of

other such plans or reactive rules (pr ).
We now show some algorithms that completely define our pro-

posal in a general way for any BDI interpreter. Algorithm 1 simply

sets up the agent’s initial state, with the help of the function for

generating events in Algorithm 2, and all the important operations

of our approach is given as an agent reasoning cycle as shown in

Algorithm 3. That algorithm makes reference to another algorithm

used to retrieve relevant plans, shown as Algorithm 4, which in

our approach is different than in previous agent languages, because

the plans give a context in which to look for relevant plans and

reactive rules.

Note that the non-terminals of the grammar define syntactic

categories, for example bs is a set of beliefs, and when needed we

will index its elements by natural numbers. For example, given an

agent aд = ⟨bs,дs,ps⟩, we may refer to bi ∈ bs as the agent’s i-th
initial belief. In the algorithms introduced below, if a variable name

coincides with a syntactical category of the grammar in Figure 1,

that clearly defines its type. Otherwise, we use the syntactic cate-

gories to express the type of a variable (or indeed to check whether

the content of a variable) using the notation u : c to say that the

content of variable u conforms to the syntactic category c . So, for
example, if we say B : bs we mean that variable B contains a set of

beliefs.

Besides the data structures defined in the grammar, we need

structures for events and intentions. An intention i is a stack

of plans, each with its own stack of deeds (those that are inter-

nal to plan or coming from activated reactive rules), denoted as

[p1[d11 , . . . ,d1n1 ], . . . ,pn [dn1
, . . . ,dnnk ]] where p1 is the plan at

the top of that intention stack and d11 is the deed at the top of

p1’s stack of deeds (and therefore the next deed to be executed).

Events typically refer to changes in beliefs or goals the agent has

adopted, so an event e is a tuple ⟨t, i⟩ where t is a trigger (as defined
in the grammar above) and i an intention, possibly [], the empty

intention. As in some agent languages, when an event is associated

with an empty intention we call it external; external events arise

from perception of the environment, agent communication (for

example, goal delegation) or initial goals, whereas internal events

are associated with an intention (for example, a plan being executed

requires the achievement of a subgoal).

The main agent algorithm is shown in Algorithm 1, which simply

initialises variable B for the agent beliefs, P for the agent plans, and

the set of events E initially contains one event for each initial goal

in the program (if any). The set of intentions I is initially empty. In

this presentation an agent enters an infinite loop within which it:

(i) perceives the environment with a function current_percepts

which is assumed as given (i.e., a concrete agent architecture will

have the ability to do so); (ii) generate events for all changes in
beliefs caused by the received percepts (see Algorithm 2); (iii) uses

the reasoning_cycle function shown in Algorithm 3 to decide

on the next action to take; an (iv) executes that action (again it is

assumed that the actual agent architecture provides the means for

executing an action, which expressed in the algorithm by function

execute).

Algorithm 1 Agent Initialisation

Require: an initial agent program aд = ⟨bs,дs,ps⟩
1: B ← bs
2: E ← {}
3: for all д ∈ дs do
4: E ← E ∪ {⟨д, []⟩}

5: P ← ps
6: I ← {}
7: while true do
8: S ← current_percepts

9: generate_events(S)

10: action ← reasoning_cycle( )

11: execute(action)

Algorithm 2 simply checks whether there are received percepts

(i.e, symbolic information saying what is currently perceived as

true in the environment) which are not currently in the belief base

and generate external events for the addition of those beliefs (line 6).

It then checks if there are beliefs which are no longer perceived as

true in the environment and generates belief deletions events for

those (line 10). The belief base itself is updating accordingly.

Algorithm 2 Event Generation from Percepts

Require: external variables B, E
1: function generate_events(S)
2: ▷ S is a set of percepts from the agent’s sensors

3: for all s ∈ S do
4: if s < B then
5: B ← B ∪ {s}
6: E ← E ∪ {⟨+s, []⟩}

7: for all b ∈ B do
8: if b < S then
9: B ← B \ {b}
10: E ← E ∪ {⟨−b, []⟩}

The main algorithm is in fact Algorithm 3, which shows the

reasoning cycle for a BDI agent following our approach. Recall
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that in our approach we have a “goal condition” which, when true,

implies that a corresponding intended means can be dropped. This

leads to some computational burden but it is an important feature

as it ensures the agent will not take unnecessary action. This is

done in lines 3–8, starting from the bottom of the intention because

dropping a goal near the bottom, if possible, will eliminate all the

stack of plans on top of it within the intention.

We then handle one event from the set of events E. Note that, as in
AgentSpeak, we assume there are user-defined functions to select an

event, an option or intended means (one among possibly various ap-

plicable plans), and an intention from the set of intentions to execute

next, respectively called in the algorithm select_ev, select_opt,

and select_int. Function get_applicable is not given an algo-

rithm because it simply checks if the context part of the plans or

rules are true (depending on the particular language, this might

include checking for logical consequence from the belief base, for

example). After one event is selected, there are different parts of

the algorithm depending on what type of event was selected.

For a belief-change event, this is handled in lines 13–21. Differ-

ently from other BDI platforms, our approach will replicate the

reactive event to each existing intention for which it is relevant. So

for each intention in the set of intention, we search for relevant

plans in the entire intention, which in our notation here includes

syntactical copies of the plan being executed, including therefore

the plans encapsulated in them. If there are relevant and applicable

plans for that particular intention, one of those is selected and its

body executed. Again, we emphasise this process is repeated for

each single intention.

External goal events, i.e., initial goals or goals delegated by other

agents, are handled in lines 23–29. For those, after selecting one

applicable relevant plan, we simply create a new intention for it if

the goal condition is not yet believed true; the intention is a stack

with a single element which has a copy of the plan p and a list of

deeds to be executed (the body of that plan).

Internal goal events, i.e., subgoals that appear in currently exe-

cuting plans, are handled in lines 31–38. This is very similar to the

case above except that new the intended means is pushed on top of

the existing intention.

The final part of the algorithm selects one intention to be further

executed in that reasoning cycle. If the first deed not yet executed

in the body of the topmost plan in the intention is a goal, the

appropriate event is generated and the reasoning cycle function

called recursively until a next action to execute is determined. If

the deed is an action, the intention is updated to reflect that the

action is going to be executed (i.e., it is removed of the list of deeds

to be executed) and the action is simply returned.

Note that in Algorithm 3 we do not give the details of what hap-

pens when a stack of deeds associated with a plan in the intention

stack becomes empty. In practice that leads to the removal of that

plan from the intention stack and possibly the subgoal in the list

of deeds of the plan below it in the intention stack (or the entire

intention if the list of deeds at the bottom is then empty).

Finally, Algorithm 4 shows a recursive function which receives

as parameter a trigger t to be matched with the triggers of plans

anywhere in the intention i and also in top-level goals of the plan

library (note that in our approach, reactive rules do not appear

at the top-level of a plan library, only associated with the goals

Algorithm 3 Reasoning Cycle

Require: external variables B, E, P, I
1: function reasoning_cycle

2: ▷ Drop all achieved goals

3: for all i ∈ I do
4: for j = length(i) down to 1 do ▷ From bottom to top

5: i ′′ ← [pj [hj ]] ∈ i
6: let pj = ⟨t, fc , fд,h,pr1, . . . ,prn⟩
7: if B |= fд then
8: I ← I \ {i} ∪ {remove(i ′′, i)}

9: ▷ Handle an event

10: se ← select_ev(E)
11: let se = ⟨t, i⟩
12: if i = {} ∧ t : (+b | −b) then ▷ external belief event

13: for all i ∈ I do ▷ may trigger a r.r. in each intention

14: rps = get_relevant(t, i, {}) ▷ search entire i
15: aps = get_applicable(rps)
16: if aps , {} then
17: r = select_opt(aps)
18: let r = ⟨t f h⟩
19: let i = [p1[h1], i

′]

20: i ′′ ← [p1[h,h1], i
′]

21: I ← I \ {i} ∪ {i ′′}

22: else if i = {} ∧ t : д then ▷ external goal event

23: rps ← get_relevant(t, [], {}) ▷ search only in P

24: aps ← get_applicable(rps)
25: if aps , {} then
26: p ← select_opt(aps)
27: let p = ⟨t, fc , fд,h,pr1, . . . ,prn⟩
28: if B ̸ |= fд then
29: I ← I ∪ {[p[h]]}

30: else if i , {} ∧ t : д then ▷ internal (goal) event

31: rps ← get_relevant(t, i, {}) ▷ search in i
32: ▷ and top level plans in P
33: aps ← get_applicable(rps)
34: if aps , {} then
35: p ← select_opt(aps)
36: let p = ⟨t, fc , fд,h,pr1, . . . ,prn⟩
37: if B ̸ |= fд then
38: I ← I \ {i} ∪ {push(p[h], i)}

39: ▷ Execute a step of an intention

40: i ← select_int(I )
41: let i = [p1[d1,h1], i

′]

42: if d1 : д then
43: E ← E ∪ {⟨d1, i⟩}
44: action ← reasoning_cycle( )

45: return action
46: else if d1 : a then
47: i ′′ ← [p1[h1], i

′]

48: I ← I \ {i} ∪ {i ′′}
49: return d1
50: ▷ See note in the text about empty stacks
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Algorithm 4 Retrieving Relevant Plans

Require: external variable P
1: function get_relevant(t,i,rps)

2: if i , {} then
3: let p[h] = head(i)
4: for all pr ∈ p do
5: if relevant(pr,t) then
6: rps ← rps ∪ {pr }

get_relevant(t, tail(i), rps)
7: else
8: for all p ∈ P do ▷ check for relevant top-level plans

9: if relevant(p,t) then
10: rps ← rps ∪ {p}

11: return rps

that the agent may need to achieve). The final parameter is a set of

plans already determined to be relevant for t , normally empty when

the function is initially called. Function relevant simply tries to

match the triggering-event of plan p with t (the implementation of

this function is of course language dependent; it might require for

example unification if the language is logic based).

4 IMPLEMENTATION AND EVALUATION
To assess the computational viability and characteristics of the

proposed language, we extended the interpreters of both ASTRA [7]

and Jason [4], called ASTRA(ER) and Jason(ER) respectively, with

the new features discussed in this paper. The implementation has

helped us not only confirm that the ideas are feasible, but provided

refinements for the model, as well as being a tool to measure how

the approach scales and compares against other languages.
1

4.1 Jason(ER)
An example of a concrete program in Jason(ER) is shown in Listing 1.

It implements plans for an initiator agent in the context of the

Contract Net Protocols (CNP) [12]. The main part of the program

is a plan to achieve the goal of running a CNP for some given

task (lines 4–14). This plan encapsulates a body (line 5) and three

sub-plans (lines 6–13). The body has three sub-goals: announce the

call for proposals (CFP), wait for bids, and contract the winner. We

highlight here the sub-plan for the sub-goal bids. It is considered
achieved when either (i) all participants have sent an answer (a

proposal or a refusal) or (ii) a deadline has passed (four seconds in

this case). The rule on line 1 is used to evaluate condition (i) and
the .wait on line 7 is used for condition (ii).

The challenge is on the interplay of those two conditions. The

solution here uses two features proposed in this paper: goal condi-

tions and sub-plans and reactive rules. The goal condition is placed

after <: on line 6 and is false. Since this condition is never sat-

isfied in the mental state of the agent, the internal action .done
is used to finish the goal. The reactive rules on lines 9 and 10 are

used to react to the answers. Thus, while running line 7 of the plan

body, for every received answer, one of those two reactive rules is

selected and, if enough answers have being received, it finishes the

goal bids. If none of these two rules are executed, the plan body

1
ASTRA(ER) is available at xxxxxxxx and Jason(ER) is available at xxxxxxxx.

Listing 1 Jason(ER) implementation of CNP initiator

1 all_ans(I) :- ... // true if all participants have answered
2

3 // plan to achieve goal cnp, I identifies the CNP
4 +!cnp(I,Task) {
5 <- announce_cfp(I,Task); !bids(I); !contract(I).
6 +!bids(I) <: false {
7 <- .wait(4000); .done.
8 // reaction to the event of new proposal / refusal
9 +propose(I,_) : all_ans(I) <- .done.
10 +refuse(I) : all_ans(I) <- .done.
11 }
12 +!announce_cfp(I,Task) <- ...
13 +!contract(I) <- ...
14 }
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Figure 2: Jason(ER) performance evaluation.

executes .done after four seconds, continuing with the sequence

on line 7.

Considering this program, we emphasise that:

• The plan to achieve goal bids encapsulates both proactive

and reactive behaviour. The former as a sequence of actions

(the body) and the latter as a set of (encapsulated) reactive

rules.

• The reaction to answers is defined in the context of the goals

bids and cnp. An agent knows therefore why (for which

goal) it is executing those reactive rules.

The implementation of Jason(ER) allowed us to evaluated how

it scales considering a MAS that concurrently runs n CNPs. It is

expected that the time required to finish n CNPs increases linearly

on n. The MAS has one agent playing initiator and eleven playing

participant. Only the initiator uses the new features of Jason(ER) as

shown in Listing 1. The result of the experiment, shown in Figure 2,

confirms that Jason(ER) scales linearly on the number of CNPs.
2

In a second experiment, we intend to evaluate the overhead of

the new features. We thus run the same MAS replacing the initiator

agent by one implemented as usual in Jason (its program is shown

in Listing 2). We noted that Jason(ER) is indeed faster than Jason for

2
The code and data required to repeat the experiment, as well as more details, are

available at xxxxxxxx.

xxxxxxxx
xxxxxxxx
xxxxxxxx
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Listing 2 Jason implementation of CNP initiator

1 +!cnp(I,Task) <- announce_cfp(I,Task); !bids(I).
2

3 +!bids(I) <- .at("now +4 seconds", { +!contract(I) }).
4

5 +propose(I,_) : all_ans(I) <- !contract(I).
6 +refuse(I) : all_ans(I) <- !contract(I).
7

8 +!announce_cfp(I,Task) <- ...
9 +!contract(I) : not .intend(contract(I)) <- ...

this application (cf. Figure 2). The reasons for this old Jason agent

being slower are the following:

(1) While sending the CFP and before finishing this task, the

agent starts receiving proposals and refusals for the first

sent messages. This agent has relevant plans for these events

(lines 5–6) even if (for sure) these plans are not applicable

yet — they can be applicable only after the last CFP was

sent. The agent is thus wasting time considering the plans

on lines 5 and 6 before finishing the CFP announcements.

(2) The contract goal (line 9) needs to be singleton for a CNP (we

cannot contract twice for the same CNP), however plans on

lines 5 and 6 may trigger this goal more than once. Thus the

context of this plan tests if no other contract intention is run-

ning for the same CNP; the internal action .intend performs

this test. This internal action complexity is O(m) (wherem
is the number of active intentions). Jason(ER) avoids these

two issues: plans for proposals and refusals are relevant only

when the goal bids is being pursued (neither before, nor

after); the goal contract is pursued after the goal bids and

not as a consequence of a reaction.

Despite the improvements in the performance (that could be

circumstantial for this very experiment/application), the main ad-

vantage of Jason(ER) is how long-term goals (line 5 in Listing 1)

are explicitly related to relevant reactions (lines 9–10). The decom-

position into sub-goals is also more explicit, as we can see when

comparing line 5 in Listing 1 against line 1 in Listing 2. While in the

former the interpreter can foresee contract as a potential future
goal, in the latter, it cannot.

4.2 ASTRA(ER)
A similar experiment was run comparing ASTRA and ASTRA(ER)

using the CNP benchmark. The results of this experiment are pre-

sented in figure 3. They demonstrate that ASTRA(ER) also outper-

forms ASTRA. This is very encouraging given that, unlike the Jason

code, the two ASTRA versions are virtually identical. The main

difference is the use of encapsulation of plans.

In addition to studying the performance of our new language, it is

also interesting to consider the effect that encapsulated plans have

on the design of larger programs. We have seen that protocols, such

as CNP, benefit from the use of encapsulated plans. But, are there

other areas that can benefit? One such area we have identified is

queue/list processing. There are many scenarios in which an agent

needs to process the items contained within a list — for example,

a list could contain an agreed list of tasks to be executed by the

agent. The code for such a scenario is presented in Listing 3. This
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Figure 3: ASTRA(ER) performance evaluation.

listing contains two agent programs — an encapsulated plan for

processing queues (QueueProcessor) and a second program Main
which is a somewhat contrived example that uses this encapsulated

plan to execute a set of purchases and payments.

What is interesting to note in this example is the use (and oth-

erwise) of encapsulated plans. The !processQueue plan includes

a plan to handle the recursive processing of the queue (including

a specified delay between processing steps). However, the plan

to handle the processing of an individual item is outside the goal

plan. This has been done intentionally — if the plan for processing

items was encapsulated within the goal rule, then it would always

Listing 3 ASTRA implementation of a Queue Processor

1 agent QueueProcessor {
2 module System system;
3 goal +!processQueue(list queue, int delay) {
4 body { !processQueueItems(queue); }
5 rule +!processQueueItems([funct I | list T]) {
6 !processItem(I);
7 if (list_count(T) > 0) {
8 system.sleep(delay);
9 !processQueueItems(T);
10 }
11 }
12 }
13 rule +!processQueueItem(funct I) {system.fail();}
14 }
15 agent Main extends QueueProcessor {
16 initial !performTasks([buy("apples"), pay(2)]);
17 goal +!performTasks(list events) {
18 body {
19 !processQueue(events, 3000);
20 }
21 rule +!processItem(buy(string I)) {
22 console.println("buying: "+ I);
23 }
24 rule +!processItem(pay(int amt)) {
25 console.println("paying: " + amt);
26 }
27 }
28 }
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be given precedence over any other rules as our algorithm checks

plans in the intention before it checks plans outside of the intention.

This has the effect of making the behaviour immutable, in that it can

never be overridden by other code. By declaring the plan outside of

the goal plan, the plan becomes mutable — we can override the plan

in any agent program that extends the QueueProcessor program.

This is precisely what the second agent program in listing 3

does. Here, we see that there is a single goal plan that declares a

subgoal that can be handled by the !processQueue plan. However,

in this case, the !performTasks goal plan also includes encapsu-

lated rules for handling the specific types of task that are given

in the input queue. The point here is that we are able to define

a mutable templated behaviour (the QueueProcessor) which can

be included in different programs where the expected behaviour

is defined immutably (so how the Main program responds to the

buy(...) and pay(...) tasks can never be changed). However,

the program can be further extended to support additional tasks as

is required.

This type of support speaks directly to long cited needs for

libraries of reusable agent behaviours. While the implementation

of templated behaviour was possible in AgentSpeak(L), they were

reliant on hidden state and could easily be modified to work in

unintended ways.

In order to better illustrate the potential of the approach, we refer

the reader to a larger example that is available online. This example

implements a one-shot first price auction infrastructure using a

combination of the FIPA request, subscribe, and CNP protocols

together with the QueueProcessor example shown above which

is used to simulate expected interactions with the system.

5 RELATEDWORK
Several implementations and extensions of the BDI model have

been proposed in literature, since the PRS [17], dMARS [11] and

AgentSpeak(L) [25]. Several agent programming languages and

development platforms in the BDI tradition are available, besides

Jason [1, 4] and ASTRA [7] used in this paper. Main examples are

JADEX [24], 3APL [15] and 2APL [8], GOAL [14], Jack [32], SRI’s

SPARK [20], and JAM [16]. Among the most recent ones, we men-

tion CANplan [27], an agent-oriented programming language that

enhances usual BDI programming style with three distinguished

features, namely declarative goals, look-ahead planning, and failure

handling. All existing implementations preserve the original ele-

ments of the BDI plan model based on plans where the triggering

conditions can be events about the environment and the plan body

is a course of action including sub-goals and primitive actions.

As far as authors’ knowledge, AgentSpeak(ER) [26] is the pro-

posal extending the plan model in the direction discussed in this

work. This paper generalises and extends the model proposed

in [26], providing both a formalisation and a concrete implementa-

tion and evaluation based on two different platforms, namely Jason

and ASTRA.

Devising effective programming models for integrating proac-

tive and reactive behaviour is a general aim of Agent-Oriented

Programming [30] and different approaches can be found in litera-

ture proposed for agent programming languages, not strictly based

on BDI.

Finally, encapsulation is strongly related to modularity, typically

impacting on how (agent) programs are organised. So this work

is related to contributions in the literature focusing on improving

modularity in BDI agent programming [5, 6, 9, 13, 19, 21–23, 31].

In that literature, modules are typically used as a mechanism to

structure agent programs in separate parts (modules), each encap-

sulating cognitive components such as beliefs, goals, and plans that

together model a specific functionality and can be used to handle

specific situations or tasks [9]. From a software engineering point of

view, modules allow a programmer to focus on those skills that are

required to handle a situation [13]. In that perspective, the approach

proposed in this paper improves modularity by devising coarse-

grained plans encapsulating goal-oriented and reactive behaviour.

This approach can be integrated with existing more comprehensive

proposal about modularity as [19], where a module is meant to be

a composable subset of the functionality of an agent, represented

by a functional unit encapsulating goals, beliefs, and plans.

6 CONCLUSIONS
In this paper, we have put forward a new model for plans in BDI

agent programming that provides encapsulation of both proactive

and reactive behaviour. We have given algorithms for how that

model is to be used in a BDI agent reasoning cycle in a way that

is abstract enough to be useful for implementation in existing and

future BDI platforms. That is, the algorithms are based on abstract

syntax so that the approach is language independent. Furthermore,

we have implemented these algorithms in two different platforms,

namely Jason and ASTRA. Finally, we have reported on experimen-

tal results showing that at least in some applications our approach

leads to significant efficiency compared to the traditional approach.

More importantly, our examples show the elegance of our model

when instantiated in particular languages and in fact some of the

advantages for programming practice.

Future work includes implementing themodel in other languages

and further evaluating its performance. More importantly, we aim

to develop more complex systems with the extended languages in

order to fully assess the practical impact of our approach on agent

development.
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